Skip to main content
Log in

Endothelin-1 induces intracellular [Ca2+] increase via Ca2+ influx through the L-type Ca2+ channel, Ca2+-induced Ca2+ release and a pathway involving ETA receptors, PKC, PKA and AT1 receptors in cardiomyocytes

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanagisawa M, Kurihara H, Kimura S. et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature, 1988, 332: 411–415 2451132, 10.1038/332411a0, 1:CAS:528:DyaL1cXlsVaks78%3D

    Article  CAS  Google Scholar 

  2. Tang J. Endocrine function of circulation system (in Chinese). Beijing: Chinese Academy of Medical Sciences & Peking Union Medical College Press, 1989.

    Google Scholar 

  3. Wainwright C L, McCabe C, Kane K A. Endothelin and the ischaemic heart. Curr Vasc Pharmacol, 2005, 3(4): 333–341 16248776, 10.2174/157016105774329417, 1:CAS:528:DC%2BD2MXhtVaht7jK

    Article  CAS  Google Scholar 

  4. Suzuki Y J, Nagase H, Nie K, et al. Redox control of growth factor signaling: recent advances in cardiovascular medicine. Antioxid Redox Signal, 2005, 7(5–6): 829–834 15890031, 10.1089/ars.2005.7.829, 1:CAS:528:DC%2BD2MXktVWitL4%3D

    Article  CAS  Google Scholar 

  5. Moe G W, Rouleau J L, Nguyen Q T, et al. Role of endothelins in congestive heart failure. Can J Physiol Pharmacol, 2003, 81(6): 588–597 12839270, 10.1139/y03-011, 1:CAS:528:DC%2BD3sXkvV2kt7o%3D

    Article  CAS  Google Scholar 

  6. Angerio A D. The role of endothelin in heart failure. Crit Care Nurs Q, 2005, 28(4): 355–359 16239825

    Article  Google Scholar 

  7. Stewart D J, Kubac G, Costello K B, et al. Increased plasma endothelin-1 in the early hours of acute myocardial infarction. J AM Coll Cardial, 1991, 18: 38–43 1:STN:280:DyaK3M3mvVCitQ%3D%3D, 10.1016/S0735-1097(10)80214-1

    Article  CAS  Google Scholar 

  8. Liu G X, Wang H, Ou D M. Endothelin-1, an important mitogen of smooth musclecells of spontaneously hypertensive rats. Chin Med J, 2002, 115: 750–752 12133549, 1:CAS:528:DC%2BD38XltVSltr0%3D

    CAS  Google Scholar 

  9. Ammarguellat F, Larouche I, Schiffrin E L, Myocardial fibrosis in DOCA-salt hypertensive rats: effect of endothelin ET (A) receptor antagonism. Circulation, 2001, 103: 319–324 11208696, 1:CAS:528:DC%2BD3MXhtFahsrY%3D

    Article  CAS  Google Scholar 

  10. Ammarguellat F Z, Gannon P O, Amiri F, et al. Fibrosis, matrix metalloproteinases, and inflammation in the heart of DOCA-salt hypertensive rats: role of ET(A) receptors. Hypertension, 2002, 39: 679–684 11882630, 10.1161/hy0202.103481, 1:CAS:528:DC%2BD38Xhs1Wqt7g%3D

    Article  CAS  Google Scholar 

  11. Kuhlmann C R, Most A K, Li F, et al. Endothelin-1-induced proliferation of human endothelial cells depends on activation of K+ channels and Ca2+ influx. Acta Physiol Scand 2005, 183: 161–169 15676057, 10.1111/j.1365-201X.2004.01378.x, 1:CAS:528:DC%2BD2MXhtlOqtro%3D

    Article  CAS  Google Scholar 

  12. Mohacsi A, Magyar J, Tamas B, et al. Effects of endothelins on cardiac and vascular cells: new therapeutic target for the future? Curr Vasc Pharmacol, 2004, 2(1): 53–63 15320833, 10.2174/1570161043476528, 1:CAS:528:DC%2BD2cXpvVek

    Article  CAS  Google Scholar 

  13. Cleemann L, Morad M. Role of Ca2+ channel in cardiac excitation-contraction coupling in the rat: evidence from Ca2+ transients and contraction. J Physiol, 1991, 432: 283–312 1653321, 1:STN:280:DyaK3MzlvFWlug%3D%3D

    Article  CAS  Google Scholar 

  14. He J Q, Pi Y, Walker J W, et al. Endothelin-1 and photoreleased diacylglycerol increase L-type Ca2+ current by activation of protein kinase C in rat ventricular myocytes. J Physiol, 2000, 524 Pt 3: 807–820 10.1111/j.1469-7793.2000.00807.x

    Article  Google Scholar 

  15. Boixel C, Dinanian S, Lang-Lazdunski L, et al. Characterization of effects of endothelin-1 on the L-type Ca2+ current in human atrial myocytes. Am J Physiol Heart Circ Physiol, 2001, 281(2): H764–H773 11454581, 1:CAS:528:DC%2BD3MXmtVClsb4%3D

    CAS  Google Scholar 

  16. Lauer M R, Gunn M D, Clusin W T. Endothelin activates voltage-dependent Ca2+ current by a G protein-dependent mechanism in rabbit cardiac myocytes. J Physiol, 1992, 448: 729–747 1593486, 1:CAS:528:DyaK38XhsVCks7s%3D

    Article  CAS  Google Scholar 

  17. Ono K, Eto K, Sakamoto A, et al. Negative chronotropic effect of endothelin 1 mediated through ETA receptors in guinea pig atria. Circ Res, 1995, 76(2): 284–292 7834840, 1:CAS:528:DyaK2MXkt1Kgtr4%3D

    Article  CAS  Google Scholar 

  18. Cheng T H, Chang C Y, Wei J, et al. Effects of endothelin 1 on calcium and sodium currents in isolated human cardiac myocytes. Can J Physiol Pharmacol, 1995, 73(12): 1774–1783 8834492, 1:CAS:528:DyaK28XhtFCit78%3D

    Article  CAS  Google Scholar 

  19. Tohse N, Hattori Y, Nakaya H, et al. Inability of endothelin to increase Ca2+ current in guinea-pig heart cells. Br J Pharmacol, 1990, 99(3): 437–438 2158839, 1:CAS:528:DyaK3cXhsFamsLw%3D

    Article  CAS  Google Scholar 

  20. Ko E A, Park W S, Ko J H, et al. Endothelin-1 increases intracellular Ca2+ in rabbit pulmonary artery smooth muscle cells through phospholipase C. Am J Physiol Heart Circ Physiol, 2005, 289(4): H1551–H1559 16162868, 10.1152/ajpheart.00131.2005, 1:CAS:528:DC%2BD2MXhtFensLnO

    Article  CAS  Google Scholar 

  21. Minowa T, Miwa S, Kobayashi S, et al. Inhibitory effect of nitrovasodilators and cyclic GMP on ET-1-activated Ca2+-permeable nonselective cation channel in rat aortic smooth muscle cells. Br J Pharmacol, 1997, 120: 1536–1544 9113376, 10.1038/sj.bjp.0701059, 1:CAS:528:DyaK2sXjtVGrs7Y%3D

    Article  CAS  Google Scholar 

  22. Zima A V, Blatter L A. Inositol-1, 4, 5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol, 2004, 555: 607–615 14754996, 10.1113/jphysiol.2003.058529, 1:CAS:528:DC%2BD2cXivFCmsbg%3D

    Article  CAS  Google Scholar 

  23. Xu Y, Sandirasegarane L, Gopalakrishnan V. Protein kinase C inhibitors enhance endothelin-1 and attenuate vasopressin and angio tensin II evoked [Ca2+]i elevation in the rat cardiomyocyte. Br J Pharmacol, 1993, 108(1): 6–8 8428214, 1:CAS:528:DyaK3sXnsVemsw%3D%3D

    Article  CAS  Google Scholar 

  24. Chu L, Takahashi R, Norota I, et al. Signal Transduction and Ca2+ Signaling in contractile regulation induced by crosstalk between endothelin-1 and norepinephrine in dog ventricular myocardium. Circ Res, 2003, 92(9): 1024–1032 12690035, 10.1161/01.RES.0000070595.10196.CF, 1:CAS:528:DC%2BD3sXjsVGqtL4%3D

    Article  CAS  Google Scholar 

  25. Moreau P, d’Uscio L V, Shaw S, et al. Angiotensin II increases tissue endothelin and induces vascular hypertrophy: reversal by ET(A)-receptor blocker, Circulation, 1997, 96(5): 1593–1597 9315552, 1:CAS:528:DyaK2sXmtFeisLs%3D

    Article  CAS  Google Scholar 

  26. Rajagopalan S, Laursen J B, Borthayre A, et al. Role for endothelin-1 in ang II-mediated hypertension, Hypertension, 1997, 30(1 Pt 1): 29–34 9231817, 1:CAS:528:DyaK2sXlt1Cku70%3D

    Article  CAS  Google Scholar 

  27. d’Uscio L V, Moreau P, Shaw S, et al. Effects of chronic ETA-receptor blockade in ang II-induced hypertension. Hypertension, 1997, 29(1 Pt 2): 435–441 9039139

    Article  Google Scholar 

  28. Bkaily G, Wang S, Bui M, et al. ET-1 stimulates Ca2+ current in cadiac cells, J Candiovasc Pharmacol, 1995, 26: 293–296

    Article  Google Scholar 

  29. Furukawa T, Ito H, Nitta J, et al. Endothelin-1 enhances calcium entry through T-type calcium channels in cultured neonatal rat ventricular myocytes. Cir Res, 1992, 71: 1242–1253 1:CAS:528:DyaK38Xmt1Ojsbc%3D

    Article  CAS  Google Scholar 

  30. Nowycky M C, Fox A P, Tsien R W. Three types of neurohal calcium channel with different calcium agonist sensitivity. Nature, 1985, 316: 440–443 2410796, 10.1038/316440a0, 1:CAS:528:DyaL2MXltVamsrY%3D

    Article  CAS  Google Scholar 

  31. Rosenberg R L, Hess P, Tsien R W. Cardiac calcium channels in planar lipid bilayers. L-type channels and calcium-permeable channels open at negative membarane potentials. J Gen Physiol, 1988, 92: 27–54 2844956, 10.1085/jgp.92.1.27, 1:CAS:528:DyaL1MXktVentbY%3D

    Article  CAS  Google Scholar 

  32. Coulombe A, Lefevre I A, Baro I, et al. Barium-and calcium-permeable channels open at negative membrane potentials in rat ventricular myocytes. J Membr Biol, 1989, 111: 57–67 2478710, 10.1007/BF01869209, 1:STN:280:DyaK3c%2FktVKrsg%3D%3D

    Article  CAS  Google Scholar 

  33. Reuter H, Stevens C F, Tsien R W, et al. Properties of single calcium channels in cardiac cell culture. Nature, 1982, 297: 501–504 6283360, 10.1038/297501a0, 1:STN:280:DyaL383hvF2qtg%3D%3D

    Article  CAS  Google Scholar 

  34. Nilius B, Hess P, Lansman J B, et al. A novel type of cardiac calcium channel in ventricular cell. Nature, 1985, 316: 443–446 2410797, 10.1038/316443a0, 1:CAS:528:DyaL2MXlt1SrsLc%3D

    Article  CAS  Google Scholar 

  35. Bean B P. Two kinds of calcium channels in canine atrial cells differences in kinetics, selectivity, and pharmacology. J Gen Physiol, 1985, 86: 1–30 2411846, 10.1085/jgp.86.1.1, 1:CAS:528:DyaL2MXkvVGrsro%3D

    Article  CAS  Google Scholar 

  36. Zhou Z, Lipsius S L. T-type Calcium current in latent pacemaker cells isolated from cat right atrium. J Mol Cell Cardiol, 1994, 26: 1211–1219 7815463, 10.1006/jmcc.1994.1139, 1:CAS:528:DyaK2cXmt1Ojurw%3D

    Article  CAS  Google Scholar 

  37. Izumi T, Kihara Y, Sarai N, et al. Reinduction of T-type calcium channels by endothelin-1 in failing hearts in vivo and in adult rat ventricular myocytes in vitro. Circulation, 2003, 108: 2530–2535 14581409, 10.1161/01.CIR.0000096484.03318.AB, 1:CAS:528:DC%2BD3sXovVeku7o%3D

    Article  CAS  Google Scholar 

  38. Habuchi Y, Tanaka H, Furukawa T, et al. Endothelin enhances delayed potassium current via phospholipase C in guinea pig ventricular myocytes. Am J Physiol, 1992, 262: H345–H354 1539693, 1:CAS:528:DyaK38XhvVymtbs%3D

    CAS  Google Scholar 

  39. Lu T, Huang Y, Jiang W. The electrophysiologic effects of endothelin a patch clamp study in guinea pig ventricular myocytes. Chin Med J, 1995, 108: 618–625 7587496, 1:CAS:528:DyaK28XhtFylt7w%3D

    CAS  Google Scholar 

  40. Banyasz T, Magyar J, Kortvely A, et al. Different effects of endothelin-1 on calcium and potassium currents in canine ventricular cells. Naunyn Schmiedebergs Arch Pharmacol, 2001, 363(4): 383–390 11330331, 10.1007/s002100000379, 1:CAS:528:DC%2BD3MXhslWmurY%3D

    Article  CAS  Google Scholar 

  41. Magyar J, Iost N, Kortvely A, et al. Effects of endothelin-1 on calcium and potassium currents in undiseased human ventricular myocytes. Pflugers Arch, 2000, 441(1): 144–149 11205054, 10.1007/s004240000400, 1:CAS:528:DC%2BD3cXotVeltbo%3D

    Article  CAS  Google Scholar 

  42. Boixel C, Dinanian S, Lang-Lazdunski L, et al. Characterization of effects of endothelin-1 on the L-type Ca2+ current in human atrial myocytes. Am J Physiol Heart Circ Physiol, 2001, 281(2): H764–H773 11454581, 1:CAS:528:DC%2BD3MXmtVClsb4%3D

    CAS  Google Scholar 

  43. Kedzierski R M, Yanagisawa M. Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol, 2001, 41: 851–876 11264479, 10.1146/annurev.pharmtox.41.1.851, 1:CAS:528:DC%2BD3MXjsVaqtL0%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingHua Zeng.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 200830870910).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Q., Li, X., Zhong, G. et al. Endothelin-1 induces intracellular [Ca2+] increase via Ca2+ influx through the L-type Ca2+ channel, Ca2+-induced Ca2+ release and a pathway involving ETA receptors, PKC, PKA and AT1 receptors in cardiomyocytes. SCI CHINA SER C 52, 360–370 (2009). https://doi.org/10.1007/s11427-009-0046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0046-z

Keywords

Navigation