Skip to main content
Log in

L-Type Calcium Channel Modulates Low-Intensity Pulsed Ultrasound-Induced Excitation in Cultured Hippocampal Neurons

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

As a noninvasive technique, ultrasound stimulation is known to modulate neuronal activity both in vitro and in vivo. The latest explanation of this phenomenon is that the acoustic wave can activate the ion channels and further impact the electrophysiological properties of targeted neurons. However, the underlying mechanism of low-intensity pulsed ultrasound (LIPUS)-induced neuro-modulation effects is still unclear. Here, we characterize the excitatory effects of LIPUS on spontaneous activity and the intracellular Ca2+ homeostasis in cultured hippocampal neurons. By whole-cell patch clamp recording, we found that 15 min of 1-MHz LIPUS boosts the frequency of both spontaneous action potentials and spontaneous excitatory synaptic currents (sEPSCs) and also increases the amplitude of sEPSCs in hippocampal neurons. This phenomenon lasts for > 10 min after LIPUS exposure. Together with Ca2+ imaging, we clarified that LIPUS increases the [Ca2+]cyto level by facilitating L-type Ca2+ channels (LTCCs). In addition, due to the [Ca2+]cyto elevation by LIPUS exposure, the Ca2+-dependent CaMKII-CREB pathway can be activated within 30 min to further regulate the gene transcription and protein expression. Our work suggests that LIPUS regulates neuronal activity in a Ca2+-dependent manner via LTCCs. This may also explain the multi-activation effects of LIPUS beyond neurons. LIPUS stimulation potentiates spontaneous neuronal activity by increasing Ca2+ influx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khan Y, Laurencin CT. Fracture repair with ultrasound: clinical and cell-based evaluation. J Bone Joint Surg Am 2008, 90: 138–144.

    Article  PubMed  Google Scholar 

  2. Wang Y, Qiu Y, Li J, Zhao C, Song J. Low-intensity pulsed ultrasound promotes alveolar bone regeneration in a periodontal injury model. Ultrasonics 2018, 90: 166–172.

    Article  CAS  PubMed  Google Scholar 

  3. Harrison A, Lin S, Pounder N, Mikuni-Takagaki Y. Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics 2016, 70: 45–52.

    Article  CAS  PubMed  Google Scholar 

  4. Krishna V, Sammartino F, Rezai A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol 2018, 75: 246–254.

    Article  PubMed  Google Scholar 

  5. Lin Z, Zhou W, Huang X, Wang K, Tang J, Niu L. On-chip ultrasound modulation of pyramidal neuronal activity in hippocampal slices. Adv Biosys 2018, 2: 1870071.

    Article  Google Scholar 

  6. Coakley WT, Dunn F. Degradation of DNA in high-intensity focused ultrasonic fields at 1 MHz. J Acoust Soc Am 1971, 50: 1539–1545.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Huang SL, Chang CW, Lee YH, Yang FY. Protective effect of low-intensity pulsed ultrasound on memory impairment and brain damage in a rat model of vascular dementia. Radiology 2017, 282: 113–122.

    Article  PubMed  Google Scholar 

  8. Li H, Sun J, Zhang D, Omire-Mayor D, Lewin PA, Tong S. Low-intensity (400 mW/cm2, 500 kHz) pulsed transcranial ultrasound preconditioning may mitigate focal cerebral ischemia in rats. Brain Stimul 2017, 10: 695–702.

    Article  CAS  PubMed  Google Scholar 

  9. Mead BP, Kim N, Miller GW, Hodges D, Mastorakos P, Klibanov AL, et al. Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson’s disease model. Nano Lett 2017, 17: 3533–3542.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Z, Qiu W, Gong H, Li G, Jiang Q, Liang P, et al. Low-intensity ultrasound suppresses low-Mg2+-induced epileptiform discharges in juvenile mouse hippocampal slices. J Neural Eng 2019, 16: 036006.

    Article  PubMed  Google Scholar 

  11. Kubanek J, Shukla P, Das A, Baccus SA, Goodman MB. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J Neurosci 2018, 38: 3081–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye J, Tang S, Meng L, Li X, Wen X, Chen S, et al. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL. Nano Lett 2018, 18: 4148–4155.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kubanek J, Shi J, Marsh J, Chen D, Deng C, Cui J. Ultrasound modulates ion channel currents. Sci Rep 2016, 6: 24170.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clennell B, Steward TGJ, Hanman K, Needham T, Benachour J, Jepson M, et al. Ultrasound modulates neuronal potassium currents via ionotropic glutamate receptors. Brain Stimul 2023, 16: 540–552.

    Article  PubMed  Google Scholar 

  15. MacKenzie G, Franks NP, Brickley SG. Two-pore domain potassium channels enable action potential generation in the absence of voltage-gated potassium channels. Pflugers Arch 2015, 467: 989–999.

    Article  CAS  PubMed  Google Scholar 

  16. Newkirk GS, Guan D, Dembrow N, Armstrong WE, Foehring RC, Spain WJ. Kv2.1 potassium channels regulate repetitive burst firing in extratelencephalic neocortical pyramidal neurons. Cereb Cortex 2022, 32: 1055–1076.

    Article  PubMed  Google Scholar 

  17. Kosugi M, Nakatsuka T, Fujita T, Kuroda Y, Kumamoto E. Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. J Neurosci 2007, 27: 4443–4451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Z, Dong W, Zhang X, Lu JM, Mei YA, Hu C. Protein kinase C controls the excitability of cortical pyramidal neurons by regulating Kv2.2 channel activity. Neurosci Bull 2022, 38: 135–148.

    Article  PubMed  Google Scholar 

  19. Shibata M, Tang C. Implications of transient receptor potential cation channels in migraine pathophysiology. Neurosci Bull 2021, 37: 103–116.

    Article  CAS  PubMed  Google Scholar 

  20. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 2015, 67: 821–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hofmann F, Flockerzi V, Kahl S, Wegener JW. L-type CaV1.2 calcium channels: from in vitro findings to in vivo function. Physiol Rev 2014, 94: 303–326.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Marks CR, Perfitt TL, Nakagawa T, Lee A, Jacobson DA, et al. A novel mechanism for Ca2+/calmodulin-dependent protein kinase II targeting to L-type Ca2+ channels that initiates long-range signaling to the nucleus. J Biol Chem 2017, 292: 17324–17336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren Y, Zhu Y, Liu L, Yu T, Dong X. Ultrasound induces contraction of the bladder smooth muscle. Int Urol Nephrol 2016, 48: 1229–1236.

    Article  PubMed  Google Scholar 

  24. Liu SH, Lai YL, Chen BL, Yang FY. Ultrasound enhances the expression of brain-derived neurotrophic factor in astrocyte through activation of TrkB-akt and calcium-CaMK signaling pathways. Cereb Cortex 2017, 27: 3152–3160.

    PubMed  Google Scholar 

  25. Yoon CW, Jung H, Goo K, Moon S, Koo KM, Lee NS, et al. Low-intensity ultrasound modulates Ca2+ dynamics in human mesenchymal stem cells via connexin 43 hemichannel. Ann Biomed Eng 2018, 46: 48–59.

    Article  PubMed  Google Scholar 

  26. Sahu G, Asmara H, Zhang FX, Zamponi GW, Turner RW. Activity-dependent facilitation of CaV1.3 calcium channels promotes KCa3.1 activation in hippocampal neurons. J Neurosci 2017, 37: 11255–11270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Omura Y, Carvalho MM, Inokuchi K, Fukai T. A lognormal recurrent network model for burst generation during hippocampal sharp waves. J Neurosci 2015, 35: 14585–14601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raus Balind S, Magó Á, Ahmadi M, Kis N, Varga-Németh Z, Lőrincz A, et al. Diverse synaptic and dendritic mechanisms of complex spike burst generation in hippocampal CA3 pyramidal cells. Nat Commun 1859, 2019: 10.

    Google Scholar 

  29. Wang J, Thio SSC, Yang SSH, Yu D, Yu CY, Wong YP, et al. Splice variant specific modulation of CaV1.2 calcium channel by galectin-1 regulates arterial constriction. Circ Res 2011, 109: 1250–1258.

    Article  CAS  PubMed  Google Scholar 

  30. Wheeler DG, Groth RD, Ma H, Barrett CF, Owen SF, Safa P, et al. Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell 2012, 149: 1112–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meijering E, Jacob M, Sarria JCF, Steiner P, Hirling H, Unser M. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 2004, 58: 167–176.

    Article  CAS  PubMed  Google Scholar 

  32. Cook GW, Benton MG, Akerley W, Mayhew GF, Moehlenkamp C, Raterman D, et al. Structural variation and its potential impact on genome instability: novel discoveries in the EGFR landscape by long-read sequencing. PLoS One 2020, 15: e0226340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi SH, Jan LY, Jan YN. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 2003, 112: 63–75.

    Article  CAS  PubMed  Google Scholar 

  34. Tang XH, Zhang GF, Xu N, Duan GF, Jia M, Liu R, et al. Extrasynaptic CaMKIIα is involved in the antidepressant effects of ketamine by downregulating GluN2B receptors in an LPS-induced depression model. J Neuroinflammation 2020, 17: 181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. King RL, Brown JR, Newsome WT, Pauly KB. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol 2013, 39: 312–331.

    Article  PubMed  Google Scholar 

  36. Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc 2011, 6: 1453–1470.

    Article  CAS  PubMed  Google Scholar 

  37. Clennell B, Steward TGJ, Elley M, Shin E, Weston M, Drinkwater BW, et al. Transient ultrasound stimulation has lasting effects on neuronal excitability. Brain Stimul 2021, 14: 217–225.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Yan J, Wang Z, Li X, Yuan Y. Neuromodulation effects of ultrasound stimulation under different parameters on mouse motor cortex. IEEE Trans Biomed Eng 2020, 67: 291–297.

    Article  PubMed  Google Scholar 

  39. Wang Z, Yan J, Wang X, Yuan Y, Li X. Transcranial ultrasound stimulation directly influences the cortical excitability of the motor cortex in parkinsonian mice. Mov Disord 2020, 35: 693–698.

    Article  PubMed  Google Scholar 

  40. Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: Modes, functions, and coupling mechanisms. Annu Rev Physiol 2014, 76: 301–331.

    Article  CAS  PubMed  Google Scholar 

  41. Xue L, Zhang Z, McNeil BD, Luo F, Wu XS, Sheng J, et al. Voltage-dependent calcium channels at the plasma membrane, but not vesicular channels, couple exocytosis to endocytosis. Cell Rep 2012, 1: 632–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoo S, Mittelstein DR, Hurt RC, Lacroix J, Shapiro MG. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat Commun 2022, 13: 493.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weinreb E, Moses E. Mechanistic insights into ultrasonic neurostimulation of disconnected neurons using single short pulses. Brain Stimul 2022, 15: 769–779.

    Article  PubMed  Google Scholar 

  44. Wang D, Grillner S, Wallén P. Calcium dynamics during NMDA-induced membrane potential oscillations in lamprey spinal neurons: contribution of L-type calcium channels (CaV1.3). J Physiol 2013, 591: 2509–2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wild AR, Sinnen BL, Dittmer PJ, Kennedy MJ, Sather WA, Dell’Acqua ML. Synapse-to-nucleus communication through NFAT is mediated by L-type Ca2+ channel Ca2+ spike propagation to the soma. Cell Rep 2019, 26: 3537-3550.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perfitt TL, Wang X, Dickerson MT, Stephenson JR, Nakagawa T, Jacobson DA, et al. Neuronal L-type calcium channel signaling to the nucleus requires a novel CaMKIIα-Shank3 interaction. J Neurosci 2020, 40: 2000–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee SJR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 2009, 458: 299–304.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 2003, 71: 401–437.

    Article  CAS  PubMed  Google Scholar 

  49. Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW. CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. J Cell Biol 2008, 183: 849–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sarica C, Nankoo JF, Fomenko A, Grippe TC, Yamamoto K, Samuel N, et al. Human studies of transcranial ultrasound neuromodulation: a systematic review of effectiveness and safety. Brain Stimul 2022, 15: 737–746.

    Article  PubMed  Google Scholar 

  51. Fomenko A, Neudorfer C, Dallapiazza RF, Kalia SK, Lozano AM. Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications. Brain Stimul 2018, 11: 1209–1217.

    Article  PubMed  Google Scholar 

  52. Lin Z, Huang X, Zhou W, Zhang W, Liu Y, Bian T, et al. Ultrasound stimulation modulates voltage-gated potassium currents associated with action potential shape in hippocampal CA1 pyramidal neurons. Front Pharmacol 2019, 10: 544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Crunelli V, Lőrincz ML, Connelly WM, David F, Hughes SW, Lambert RC, et al. Dual function of thalamic low-vigilance state oscillations: Rhythm-regulation and plasticity. Nat Rev Neurosci 2018, 19: 107–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buzsáki G, Mizuseki K. The log-dynamic brain: How skewed distributions affect network operations. Nat Rev Neurosci 2014, 15: 264–278.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Womelsdorf T, Ardid S, Everling S, Valiante TA. Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control. Curr Biol 2014, 24: 2613–2621.

    Article  CAS  PubMed  Google Scholar 

  56. Lin Z, Meng L, Zou J, Zhou W, Huang X, Xue S, et al. Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy. Theranostics 2020, 10: 5514–5526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang X, Lin Z, Wang K, Liu X, Zhou W, Meng L, et al. Transcranial low-intensity pulsed ultrasound modulates structural and functional synaptic plasticity in rat hippocampus. IEEE Trans Ultrason Ferroelectr Freq Control 2019, 66: 930–938.

    Article  PubMed  Google Scholar 

  58. Truong TT, Chiu WT, Lai YS, Huang H, Jiang X, Huang CC. Ca2+ signaling–mediated low-intensity pulsed ultrasound–induced proliferation and activation of motor neuron cells. Ultrasonics 2022, 124: 106739.

    Article  CAS  PubMed  Google Scholar 

  59. Qiu Z, Guo J, Kala S, Zhu J, Xian Q, Qiu W, et al. The mechanosensitive ion channel Piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. iScience 2019, 21: 448–457.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Oh SJ, Lee JM, Kim HB, Lee J, Han S, Bae JY, et al. Ultrasonic neuromodulation via astrocytic TRPA1. Curr Biol 2019, 29: 3386-3401.e8.

    Article  CAS  PubMed  Google Scholar 

  61. Lim J, Tai HH, Liao WH, Chu YC, Hao CM, Huang YC, et al. ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. Elife 2021, 10: e61660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jalan-Sakrikar N, Bartlett RK, Baucum AJ 2nd, Colbran RJ. Substrate-selective and calcium-independent activation of CaMKII by α-actinin. J Biol Chem 2012, 287: 15275–15283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Duque M, Lee-Kubli CA, Tufail Y, Magaram U, Patel J, Chakraborty A, et al. Publisher correction: sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels. Nat Commun 2022, 13: 1130.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Michel MC. Editorial comment on: Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 2008, 53: 399–400.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Program of China (2022YFC3602700 and 2022YFC3602702), the Science and Technology Innovation 2030—Brain Science and Brain-Inspired Intelligence Project (2021ZD0201301), the National Natural Science Foundation of China (32170688, 31971159, and 12034015), the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-07-E00041), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), the ZJ Lab, the Shanghai Center for Brain Science and Brain-Inspired Technology, the Program of Shanghai Academic Research Leaders (21XD1403600), and the Fundamental Research Funds for the Central Universities (22120230562).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Cheng or Lei Xue.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, WY., Chen, YM., Wang, YF. et al. L-Type Calcium Channel Modulates Low-Intensity Pulsed Ultrasound-Induced Excitation in Cultured Hippocampal Neurons. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-024-01186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-024-01186-2

Keywords

Navigation