Skip to main content

Advertisement

Log in

The effect of permafrost on time-split soil erosion using radionuclides (137Cs, 239 + 240Pu, meteoric 10Be) and stable isotopes (δ 13C) in the eastern Swiss Alps

  • SOIL FORMATION AND WEATHERING IN TIME AND SPACE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Global warming is expected to change the thermal and hydrological soil regime in permafrost ecosystems which might impact soil erosion processes. Erosion assessment using radionuclides can provide information on past and ongoing, i.e. time-split, processes. The focus of this work was to find out if permafrost soils in the Swiss Alps differ in their medium- and long-term erosion rates from non-permafrost soils and if rates have accelerated during the last few decades.

Materials and methods

Using cosmogenic (meteoric 10Be) and anthropogenic radionuclides (137Cs, 239 + 240Pu), a time-split approach was achieved by determining erosion activities on the long (millennia; 10Be) and medium term (decades; 137Cs, 239 + 240Pu). Additionally, the stable isotope δ 13C signature in soil organic matter was used as a qualitative indicator for soil disturbance patterns. We compared soil erosion processes in permafrost soils and nearby unfrozen soils in the alpine (sites at 2,700 m asl, alpine tundra) and the subalpine (sites 1,800 m asl, natural forest) range of the Swiss Alps (Upper Engadine). 137Cs, 239 + 240Pu and δ 13C measurements were performed at the alpine sites only.

Results and discussion

Depending on the calculation procedure (profile distribution model or inventory method), the 137Cs measurements revealed soil accumulation rates of 1–3 t/km2/year in permafrost soils and 34–52 t/km2/year in non-permafrost soils. However, due to snow cover and subsequent melt-water runoff during 137Cs deposition after the Chernobyl accident, caesium does not seem to be an appropriate soil erosion tracer on the investigated alpine sites. With 239 + 240Pu, more reliable results were achieved. 239 + 240Pu measurements provided erosion rates of 31–186 t/km2/year in permafrost soils and accumulation rates of 87–218 t/km2/year in non-permafrost soils. Erosion and accumulation were relatively low and related to the vegetation community. The long-term (10Be) soil redistribution rates (erosion rates up to 49 t/km2/year and accumulation rates up to 4 t/km2/year) were low with no significant differences between permafrost and non-permafrost sites. The δ 13C signature indicated soil disturbances in permafrost and non-permafrost soils compared to the reference site.

Conclusions

Our results highlight that soil redistribution rates have increased during the last few decades. However, whether the higher medium-term erosion rates obtained for the last decades are the result of the ongoing climate warming and related accelerated soil erosion or if other factors (e.g. measurement uncertainties) have been responsible for such an increase could not fully be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alewell C, Meusburger K, Brodbeck M, Bänninger D (2008) Methods to describe and predict soil erosion in mountain regions. Landsc Urban Plan 88:46–53

    Article  Google Scholar 

  • Alewell C, Giesler R, Klaminder J, Leifeld J, Rollog M (2011) Stable carbon isotopes as indicators for environmental change in palsa peats. Biogeosciences 8:1769–1778

    Article  CAS  Google Scholar 

  • Alewell C, Meusburger K, Juretzko G, Mabit L, Ketterer ME (2013) Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands. Chemosphere. doi:10.1016/j.chemosphere.2013.12.016

    Google Scholar 

  • Bochet E, Rubio JL, Poesen J (1998) Relative efficiency of three representative matorral species in reducing water erosion at the microscale in a semi-arid climate. Geomorphology 23:139–150

    Article  Google Scholar 

  • Böckli L, Brenning A, Gruber S, Noetzli J (2012) A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges. Cryosphere 6:125–140

    Article  Google Scholar 

  • Böhlert R, Egli M, Maisch M, Brandová D, Ivy-Ochs S, Kubik PW, Haeberli W (2011) Application of a combination of dating techniques to reconstruct the Lateglacial and early Holocene landscape history of the Albula region (eastern Switzerland). Geomorphology 127:1–13

    Article  Google Scholar 

  • Bradbury MH, Baeyens B (2000) A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J Contam Hydrol 42:141–163

    Article  CAS  Google Scholar 

  • Brown L, Stensland GJ, Klein J, Middleton R (1989) Atmospheric deposition of 7Be and 10Be. Geochim Cosmochim Acta 53:135–142

    Article  CAS  Google Scholar 

  • Bunzl K, Flessa H, Kracke W, Schimmack W (1995) Association of fallout 239+240Pu and 241Am with various soil components in successive layers of a grassland soil. Environ Sci Technol 29:2513–2518

    Article  CAS  Google Scholar 

  • Ceaglio E, Meusburger K, Freppaz M, Zanini E, Alewell C (2012) Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d’Aosta, NW Italy). Hydrol Earth Syst Sci 16:517–528

    Article  Google Scholar 

  • Dahlman RC, Francis CW, Tamura T (1975) Radiocesium cycling in vegetation and soil. In: Howell FG, Gentry JB, Smith MH (eds) Mineral cycling in southeastern ecosystems. USAEC Symposium Series, CONF-740513. US Atomic Energy Commission, Washington, pp 462–481

    Google Scholar 

  • Davis BAS, Brewer S, Stevenson AC, Guiot J, data contributors (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1701–1716

    Article  Google Scholar 

  • De Cort M, Dubois G, Fridman ShD, Germenchuk MG, Izrael YuA, Janssens A, Jones AR, Kelly GN, Kvasnikova EV, Matveenko II, Nazarov IM, Pokumeiko YuM, Sitak VA, Stukin ED, Tabachny LYa, Tsaturov YuS, Avdyushin SI (1998) Atlas of caesium deposition on Europe after the Chernobyl accident. Available via ECJRC. http://rem.jrc.ec.europa.eu/RemWeb/Browse.aspx?path=Atlas. Accessed 03 Feb 2014

  • Dumat C, Cheshire MV, Fraser AR, Shand CA, Staunton S (1997) The effect of removal of soil organic matter and iron on the adsorption of radiocaesium. Eur J Soil Sci 48:675–683

    Article  CAS  Google Scholar 

  • Egli M, Brandova D, Böhlert R, Favilli F, Kubik PW (2010) 10Be inventories in Alpine soils and their potential for dating land surfaces. Geomorphology 119:62–73

    Article  Google Scholar 

  • Everett SE, Tims SG, Hancock GJ, Bartlwy R, Fifield LK (2008) Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment. J Environ Radioact 99:383–393

    Article  CAS  Google Scholar 

  • Filippi ML, Lambert P, Hunziker J, Kubler B, Bernasconi S (1999) Climatic and anthropogenic influence on the stable isotope record from bulk carbonates and ostracodes in Lake Neuchatel, Switzerland, during the last two millennia. J Paleolimnol 21:19–34

    Article  Google Scholar 

  • Freppaz M, Godone D, Filippa G, Maggioni M, Lunardi S, Williams MW, Zanini E (2010) Soil erosion caused by snow avalanches: a case study in the Aosta Valley (NW Italy). Arct Antarct Alp Res 42:412–421

    Article  Google Scholar 

  • Gal JF, Maria PC, Massi L, Mayeux C, Burk P, Tammiku-Taul J (2007) Cesium cation affinities and basicities. Int J Mass Spectrom 267:7–23

    Article  CAS  Google Scholar 

  • Gastberger M, Steinhäusler F, Gerzabek MH, Lettner H, Hubmer A (2000) Soil-to-plant transfer of fallout caesium and strontium in Austrian lowland and Alpine pastures. J Environ Radioact 49:217–233

    Article  CAS  Google Scholar 

  • Graly JA, Bierman PR, Reusser LJ, Pavich MJ (2010) Meteoric 10Be in soil profiles—a global meta-analysis. Geochim Cosmochim Acta 74:6814–6829

    Article  CAS  Google Scholar 

  • Granger DE, Clifford SR, Kirchner JW, Finkel RC (2001) Modulation of erosion on steep granitic slopes by boulder armouring, as revealed by cosmogenic 26Al and 10Be. Earth Planet Sci Lett 186:269–281

    Article  CAS  Google Scholar 

  • Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:221–233

    Article  Google Scholar 

  • Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geogr 2:189–217

    Article  Google Scholar 

  • Haas JN, Rischoz I, Tinner W, Wick L (1998) Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at the timberline in the Alps. The Holocene 8:301–309

    Article  Google Scholar 

  • Haeberli W, Frauenfelder R, Kääb A, Wagner S (2004) Characteristics and potential climatic significance of “miniature ice caps” (crest- and cornice-type low-altitude ice archives). J Glaciol 50:129–136

    Article  Google Scholar 

  • Haeberli W, Egli M, Keller F, Krüsi B, Rothenbuehler C, Meilwes J, Gruber S (2007) Raum-zeitliche Informationen über schnelle Klimaänderungen in hochalpinen Umweltsystemen als strategisches Werkzeug für Analyse, Kommunikation, partizipative Planung und Managment im Tourismusgebiet Oberengadin. Schlussbericht GISALP, NFP48 (Nationales Forschungsprogramm “Alpen”). vdf-Verlag, Zürich

  • Haeberli W, Noetzli J, Arenson L, Delaloye R, Gaertner-Roer I, Gruber S, Isakesen K, Kneisel C, Krautblatter M, Phillips M (2010) Mountain permafrost: development and challenges of a young research field. J Glaciol 56:1043–1058

    Article  Google Scholar 

  • Hitz C, Egli M, Fitze P (2002) Determination of the sampling volume for representative analysis of alpine soils. Z Pflanz Bodenkund 165:326–331

    Article  CAS  Google Scholar 

  • Hoelzle M, Haeberli W, Dischl M, Peschke W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Global Planet Chang 36:295–306

    Article  Google Scholar 

  • Hoo WT, Fifield LK, Tims SG, Fujioka T, Mueller N (2011) Using fallout plutonium as a probe for erosion assessment. J Environ Radioact 102:937–942

    Article  CAS  Google Scholar 

  • Horiuchi K, Minoura K, Kobayashi K, Nakamura T, Hatori S, Matsuzaki H, Kawai T (1999) Last-glacial to post-glacial 10Be fluctuations in a sediment core from the Academician Ridge, Lake Baikal. Geophys Res Lett 26:1047–1050

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2007) World reference base for soil resources 2006. First update 2007. World Soil Resources Reports No. 103. FAO, Rome, 116 pp

  • Jóhannesson T, Raymond C, Waddington E (1989) Time-scale for adjustment of glaciers to changes in mass balance. J Glaciol 35:355–369

    Google Scholar 

  • Kääb A, Chiarle M, Raup B, Schneider C (2007) Climate change impacts on mountain glaciers and permafrost. Global Planet Chang 56:vii–ix

    Article  Google Scholar 

  • Kelley JM, Bond LA, Beasley TM (1999) Global distribution of Pu isotopes and 237Np. Sci Total Environ 237–238:483–500

    Article  Google Scholar 

  • Ketterer ME, Szechenyi SC (2008) Determination of plutonium and other transuranic elements by inductively coupled plasma mass spectrometry: a historical perspective and new frontiers in the environmental sciences. Spectrochim Acta B 63:719–737

    Article  Google Scholar 

  • Ketterer ME, Zhang J, Yamada M (2011) Application of transuranics as tracers and chronometers in the environment. In: Baskaran M (ed) Handbook of environmental isotope geochemistry, advances in isotope geochemistry. Springer, Berlin, pp 395–417

    Google Scholar 

  • Kirchner G, Strebl F, Bossew P, Ehlken S, Gerzabek MH (2009) Vertical migration of radionuclides in undisturbed grassland soils. J Environ Radioact 100:716–720

    Article  CAS  Google Scholar 

  • Kneisel C (2010) The nature and dynamics of frozen ground in alpine and subarctic periglacial environments. The Holocene 20:423–445

    Article  Google Scholar 

  • Kneisel C, Hauck C, Vonder Mühll D (2000) Permafrost below the timberline confirmed and characterized by geoelectrical resistivity measurements, Bever Valley, eastern Swiss Alps. Permafr Periglac 11:295–304

    Article  Google Scholar 

  • Kohn JM (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci U S A 107:19691–19695

    Article  CAS  Google Scholar 

  • Konz N, Schaub M, Prasuhn V, Baenninger D, Alewell C (2009) Caesium-137 based erosion-rate determination of a steep mountainous region. J Plant Nutr Soil Sci 172:615–622

    Article  CAS  Google Scholar 

  • Konz N, Baenninger D, Konz M, Nearing M, Alewell C (2010) Process identification of soil erosion in steep mountain regions. Hydrol Earth Syst Sci 14:675–686

    Article  Google Scholar 

  • Kubik PW, Christl C (2009) 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility. Nucl Instrum Meth 268:880–883

    Article  Google Scholar 

  • Lal D (2001) New nuclear methods for studies of soil dynamics utilizing cosmic ray produced for radionuclides. In: Stott DE, Mohtar RH, Steinhardt GC (ed) Sustaining the global farm. 10th International Soil Conservation Organization Meeting, Purdue University and USDA-ARS National Soil Erosion Research Laboratory, pp 1044–1052

  • Lal R, Tims SG, Fifield LK, Wasson RJ, Howe D (2013) Applicability of 239Pu as a tracer for soil erosion in the wet-dry tropic of northern Australia. Nucl Instrum Meth B 294:577–583

    Article  CAS  Google Scholar 

  • Lana-Renault N, Alvera B, Garcìa-Ruiz JM (2011) Runoff and sediment transport during the snowmelt period in a Mediterranean high-mountain catchment. Arct Antarct Alp Res 43:213–222

    Article  Google Scholar 

  • Lettner H, Bossew P, Hubmer AK (2000) Spatial variability of fallout caesium-137 in Austrian alpine regions. J Environ Radioact 47:71–82

    Article  CAS  Google Scholar 

  • Mabit L, Meusburger K, Fulajtar E, Alewell C (2013) The usefulness of 137Cs as a tracer for soil erosion assessment: a critical reply to Parsons and Foster (2011). Earth Sci Rev 127:300–307

    Article  CAS  Google Scholar 

  • Maejima Y, Matsuzaki H, Higashi T (2005) Application of cosmogenic 10Be to dating soils on the raised coral reef terraces of Kikai Island, southwest Japan. Geoderma 126:389–399

    Article  CAS  Google Scholar 

  • Maisch M (2001) The longterm signal of climate change in the Swiss Alps—glacier retreat since the end of the Little Ice Age and future ice decay scenarios. Geogr Fis Din Quat 23:139–151

    Google Scholar 

  • McKean JA, Dietrich WE, Finkel RC, Southon JR, Caffee MW (1993) Quantification of soil production and down slope creep rates from cosmogenic 10Be accumulations on a hillslope profile. Geology 21:343–346

    Article  CAS  Google Scholar 

  • Meusburger K, Mabit L, Park JH, Sandor T, Alewell C (2013) Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea. Biogeosciences 10:5627–5638

    Article  Google Scholar 

  • Monaghan MC, Krishnaswami S, Turekian KK (1985/1986) The global average production of 10Be. Earth Planet Sci Lett 76:279–287

    Google Scholar 

  • Nakanishi T, Matsubga T, Koarashi J, Atarashi-Andon M (2014) 137Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 128:9–14

    Article  CAS  Google Scholar 

  • Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J (2007) Absolute calibration of 10Be AMS standards. Nucl Instrum Meth B 258:403–413

    Article  CAS  Google Scholar 

  • Nötzli J, Gruber S (2005) Alpiner Permafrost – Ein Überblick. Jahrbuch des Vereins zum Schutz der Bergwelt 70:111–121

    Google Scholar 

  • Ould-Dada Z (2002) Dry deposition profile of small particles within a model spruce canopy. Sci Total Environ 286:83–96

    Article  CAS  Google Scholar 

  • Pavich MJ, Brown L, Harden J, Klein J, Middleton R (1986) 10Be distribution in soils from Merced River terraces, California. Geochim Cosmochim Acta 50:1727–1735

    Article  CAS  Google Scholar 

  • Ping CL, Michaelson GJ, Kimble JM, Romanovsky VE, Shur YL, Swanson DK, Walker DA (2008) Cryogenesis and soil formation along a bioclimate gradient in Arctic North America. J Geophys Res-Biogeo 113, G03S12

    Article  Google Scholar 

  • Ritchie JC, Ritchie CA (2007) Bibliography of publications of 137Cesium studies related to erosion and sediment deposition. USDA-ARS Hydrology and Remote Sensing Laboratory, United States Department of Agriculture, Agricultural Research Service

  • Rogowski AS, Tamura T (1970) Environmental mobility of cesium-137. Radiat Bot 10:35–45

    Article  CAS  Google Scholar 

  • Schaller M, von Blanckenburg F, Hovius N, Kubik PW (2001) Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth Planet Sci Lett 188:441–458

    Article  CAS  Google Scholar 

  • Schaub M, Alewell C (2009) Stable carbon isotopes as an indicator for soil degradation in an alpine environment (Urseren Valley, Switzerland). Rapid Commun Mass Spectrom 23:1499–1507

    Article  CAS  Google Scholar 

  • Scheurer K, Alewell C, Bänninger D, Burkhardt-Holm P (2009) Climate and land-use changes affecting river sediment and brown trout in alpine countries—a review. Environ Sci Pollut Res 16:232–242

    Article  Google Scholar 

  • Schimmack W, Auerswald K, Bunzl K (2001) Can 239+240Pu replace 137Cs as an erosion tracer in agricultural landscapes contaminated with Chernobyl fallout? J Environ Radioact 53:41–57

    Article  CAS  Google Scholar 

  • Schwarb M, Daly C, Frei C, Schär C (2000) Mittlere jährliche Niederschlagshöhe im europäischen Alpenraum 1971–1990. In Hydrologischer Atlas der Schweiz: Blatt 2.6

  • Shakhashiro A, Mabit L (2009) Results of an IAEA intercomparison exercise to assess Cs-137 and total Pb-210 analytical performance in soil. Appl Radiat Isot 67:139–146

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2010) Keys to Soil Taxonomy, 11th edition. USDA (United States Department of Agriculture), NRCS (National Resources Conservation Service), Washington

    Google Scholar 

  • Staunton S, Dumat C, Zsolnay A (2002) Possible role of organic matter in radiocaesium adsorption in soils. J Environ Radioact 58:163–173

    Article  CAS  Google Scholar 

  • Suter J (1981) Gletschergeschichte des Oberengadins: Untersuchungen von Gletscherschwankungen in der Err-Julier-Gruppe. Dissertation, University of Zürich, Physische Geographie, vol. 2

  • Tape KD, Verbyla D, Welker JM (2011) Twentieth century erosion in Arctic Alaska foothills: the influence of shrubs, runoff, and permafrost. J Geophys Res 116, G04024

    Google Scholar 

  • Tims SG, Everett SE, Fifield LK, Hancock GJ, Bartley R (2010) Plutonium as a tracer of soil and sediment movement in the Herbert River, Australia. Nucl Instrum Meth B 268:1150–1154

    Article  CAS  Google Scholar 

  • Tsai H, Maejima Y, Hseu ZY (2008) Meteoric 10Be dating of highly weathered soils from fluvial terraces in Taiwan. Quat Int 188:185–196

    Article  Google Scholar 

  • Turner M, Rudin M, Cizdziel J, Hodge V (2003) Excess plutonium in soil near the Nevada Test Site, USA. Environ Pollut 125:193–203

    Article  CAS  Google Scholar 

  • Voigt G, Fesenko S (eds) (2009) Remediation of contaminated environments. Radioact Environ 14:477

  • Walling DE, He Q (1999) Improved models for estimating soil erosion rates from cesium-137 measurements. J Environ Qual 28:611–622

    Article  CAS  Google Scholar 

  • Walling DE, He Q (2000) The global distribution of bomb-derived 137Cs reference inventories. Final Rep. IAEA Technical Contract 10361/RO-R1

  • Walling DE, Quine TA (1990) Calibration of caesium-137 measurements to provide quantitative erosion rate data. Land Degrad Rehabil 2:161–175

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook No. 537. USDA/Science and Education Administration, US. Govt. Printing Office, Washington, DC, 58

  • Yoshihara T, Matsumura H, Hashida S, Nagaoka T (2013) Radiocesium contaminations of 20 wood species and the corresponding gamma-ray dose rates around the canopies at 5 months after the Fukushima nuclear power plant accident. J Environ Radioact 115:60–68

    Article  CAS  Google Scholar 

  • Zapata F (2002) Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Kluwer, Dordrecht

    Google Scholar 

  • Zhang X, Higgitt DL, Walling DE (1990) A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. Hydrol Sci J 35:243–252

    Article  Google Scholar 

  • Zhiyanski M, Bech J, Sokolovska M, Lucot E, Bech J, Badot P-M (2008) Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria. J Geochem Explor 96:256–266

    Article  CAS  Google Scholar 

  • Ziegler AD, Giambelluca TW (1998) Influence of revegetation efforts on hydrologic response and erosion, Kaho’Olawe Island, Hawaii. Land Degrad Dev 9:189–206

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Swiss National Foundation (SNF) project grant no. 200021M_134479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Zollinger.

Additional information

Responsible editor: Fabio Scarciglia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zollinger, B., Alewell, C., Kneisel, C. et al. The effect of permafrost on time-split soil erosion using radionuclides (137Cs, 239 + 240Pu, meteoric 10Be) and stable isotopes (δ 13C) in the eastern Swiss Alps. J Soils Sediments 15, 1400–1419 (2015). https://doi.org/10.1007/s11368-014-0881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-014-0881-9

Keywords

Navigation