Skip to main content

Advertisement

Log in

Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amellal N, Portal JM, Berthelin J (2001) Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil. Appl Geochem 16:1611–1619

    Article  CAS  Google Scholar 

  • ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). U.S. Department of Health and Human Services-Agency for Toxic Subtances and Disease Registry, Atlanta

    Google Scholar 

  • Benhabib K, Faure P, Sardin M, Simonnot M-O (2010) Characteristics of a solid coal tar sampled from a contaminated soil and of the organics transferred into water. Fuel 89:352–359

    Article  CAS  Google Scholar 

  • Bezza FA, Nkhalambayausi Chirwa EM (2016) Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere 144:635–644. doi:10.1016/j.chemosphere.2015.08.027

    Article  CAS  Google Scholar 

  • Biache C, Kouadio O, Lorgeoux C, Faure P (2014a) Impact of clay mineral on air oxidation of PAH-contaminated soils. Environ Sci Pollut Res 21:11017–11026. doi:10.1007/s11356-014-2966-9

    Article  CAS  Google Scholar 

  • Biache C, Mansuy-Huault L, Faure P (2014b) Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: implications for the source identifications. J Hazard Mater 267:31–39. doi:10.1016/j.jhazmat.2013.12.036

    Article  CAS  Google Scholar 

  • Biache C, Lorgeoux C, Andriatsihoarana S, Colombano S, Faure P (2015) Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils. J Hazard Mater 286:55–63. doi:10.1016/j.jhazmat.2014.12.041

    Article  CAS  Google Scholar 

  • Bogan BW, Trbovic V (2003) Effect of sequestration on PAH degradability with Fenton’s reagent: roles of total organic carbon, humin, and soil porosity. J Hazard Mater B100:285–300

    Article  Google Scholar 

  • Buffinton GD, Ollinger K, Brunmark A, Cadenas E (1989) DT-diaphorase-catalysed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates. Effect of substituents on autoxidation rates. Biochem J 257:561–571

    Article  CAS  Google Scholar 

  • Calvet R (1989) Adsorption of organic chemicals in soils. Environ Health Perspect 83:145–177

    Article  CAS  Google Scholar 

  • Cébron A, Faure P, Lorgeoux C, Ouvrard S, Leyval C (2013) Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: consequences on biodegradation. Environ Pollut 177:98–105

    Article  Google Scholar 

  • Chen F, Tan M, Ma J, Zhang S, Li G, Qu J (2016) Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: a greenhouse study. J Hazard Mater 302:250–261. doi:10.1016/j.jhazmat.2015.09.068

    Article  CAS  Google Scholar 

  • Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895

    Article  CAS  Google Scholar 

  • De Souza e Silva PT, Da Silva VL, De Barros Neto B, Simonnot M-O (2009a) Phenanthrene and pyrene oxidation in contaminated soils using Fenton’s reagent. J Hazard Mater 161:967–973

    Article  Google Scholar 

  • De Souza e Silva PT, Da Silva VL, De Barros Neto B, Simonnot M-O (2009b) Potassium permanganate oxidation of phenanthrene and pyrene in contaminated soils. J Hazard Mater 168:1269–1273

    Article  Google Scholar 

  • De Weert JP, Keijzer TJ, Van Gaans PF (2014) Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products. Chemosphere 117:94–103. doi:10.1016/j.chemosphere.2014.05.082

    Article  CAS  Google Scholar 

  • Durant JL, Busby WF Jr, Lafleur AL, Penman BW, Crespi CL (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res 371:123–157

    Article  CAS  Google Scholar 

  • EEA (2008) European Environment Agency. http://www.eea.europa.eu/themes/soil/soil-threats. Accessed January 2015

  • EPRI (1993) Chemical and physical characteristics of tar samples from selected manufactured gas plant sites—final report. Electric Power Research Institute (EPRI), Colchester

    Google Scholar 

  • Fernandez M, L’Haridon J (1992) Influence of lighting conditions on toxicity and genotoxicity of various PAH in the newt in vivo. Mutat Res 298:31–41

    Article  CAS  Google Scholar 

  • Fernandez P, Grifoll M, Solanas AM, Bayona JM, Albaiges J (1992) Bioassay-directed chemical analysis of genotoxic components in coastal sediments. Environ Sci Technol 26:817–829

    Article  CAS  Google Scholar 

  • Forsey SP, Thomson NR, Barker JF (2010) Oxidation kinetics of polycyclic hydrocarbons by permanganate. Chemosphere 63:1754–1763

  • Garcia-Delgado C, D’Annibale A, Pesciaroli L, Yunta F, Crognale S, Petruccioli M, Eymar E (2015) Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. Sci Total Environ 508:20–28. doi:10.1016/j.scitotenv.2014.11.046

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. doi:10.1016/j.jhazmat.2009.03.137

    Article  CAS  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545

    Article  CAS  Google Scholar 

  • House DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62:185–203

    Article  CAS  Google Scholar 

  • Huling SG, Pivetz BE (2006) In situ chemical oxidation. US EPA, Washington, D.C.

    Google Scholar 

  • ITRC (2005) Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater—second edition, The Interstate Technology & Regulatory Council—In Situ Chemical Oxidation Team, p 172

  • Jones KC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–221

    Article  CAS  Google Scholar 

  • Jonsson S, Persson Y, Frankki S, Lundstedt S, Van Bavel B, Haglund P, Tysklind M (2006) Comparison of Fenton’s reagent and ozone oxidation of polycyclic aromatic hydrocarbons in aged contaminated soils. J Soils Sediments 6:208–214. doi:10.1065/jss2006.08.179

    Article  CAS  Google Scholar 

  • Kishikawa N, Wada M, Ohba Y, Nakashima K, Kuroda N (2004) Highly sensitive and selective determination of 9,10-phenanthrenequinone in airborne particulates using high-performance liquid chromatography with pre-column derivatization and fluorescence detection. J Chromatogr A 1057:83–88

    Article  CAS  Google Scholar 

  • Knecht AL et al (2013) Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicol Appl Pharmacol 271:266–275. doi:10.1016/j.taap.2013.05.006

    Article  CAS  Google Scholar 

  • Kubatova A, Steckler TS, Gallagher JR, Hawthorne SB, Picklo MJ (2004) Toxicity of wide-range polarity fractions from wood smoke and diesel exhaust particulate obtained using hot pressurized water. Environ Toxicol Chem 23:2243–2250

    Article  CAS  Google Scholar 

  • Lampi MA, Gurska J, McDonald KIC, Xie F, Huang X-D, George Dixon D, Greenberg BM (2005) Photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna: ultraviolet-mediated effects and the toxicity of polycyclic aromatic hydrocarbon photoproducts. Environ Toxicol Chem 25:1079–1087

    Article  Google Scholar 

  • Lane WF, Loehr RC (1992) Estimating the equilibrium aqueous concentrations of polynuclear aromatic hydrocarbons in complex mixtures. Environ Sci Technol 26:983–990

    Article  CAS  Google Scholar 

  • Lemaire J, Croze V, Maier J, Simonnot M-O (2011) Is it possible to remediate a BTEX contaminated chalky aquifer by in situ chemical oxidation? Chemosphere 84:1181–1187. doi:10.1016/j.chemosphere.2011.06.052

    Article  CAS  Google Scholar 

  • Lemaire J, Buès M, Kabeche T, Hanna K, Simonnot M-O (2013a) Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation. J Environ Chem Eng 1:1261–1268. doi:10.1016/j.jece.2013.09.018

    Article  CAS  Google Scholar 

  • Lemaire J, Laurent F, Leyval C, Schwartz C, Bues M, Simonnot M-O (2013b) PAH oxidation in aged and spiked soils investigated by column experiments. Chemosphere 91:406–414. doi:10.1016/j.chemosphere.2012.12.003

    Article  CAS  Google Scholar 

  • Liao X, Zhao D, Yan X, Huling SG (2014) Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil. J Hazard Mater 276:26–34. doi:10.1016/j.jhazmat.2014.05.018

    Article  CAS  Google Scholar 

  • Lundstedt S et al (2007) Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio 36:475–485

    Article  CAS  Google Scholar 

  • Luthy RG et al (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    Article  CAS  Google Scholar 

  • Ma L, Zhang J, Han L, Li W, Xu L, Hu F, Li H (2012) The effects of aging time on the fraction distribution and bioavailability of PAH. Chemosphere 86:1072–1078. doi:10.1016/j.chemosphere.2011.11.065

    Article  CAS  Google Scholar 

  • Mader BT, Uwe-Goss K, Eisenreich SJ (1997) Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces. Environ Sci Technol 31:1079–1086

    Article  CAS  Google Scholar 

  • Mallakin A, McConkey BJ, Miao G, McKibben B, Snieckus V, George Dixon D, Greenberg BM (1999) Impacts of structural photomodification on the toxicity of environmental contaminants: anthracene photooxidation products. Ecotoxicol Environ Saf 43:204–212

    Article  CAS  Google Scholar 

  • Marin-Morales MA, Leme DM, Mazzeo DEC (2009) A review of the hazardous effects of polycyclic aromatic hydrocarbons on living organisms. In: Polycyclic aromatic hydrocarbons: pollution, health effects and chemistry. Polymer Science and Technology. Nova Science Publishers, pp 150

  • McConkey BJ, C.L. D, Dixon DG, Greenberg BM (1997) Toxicity of a PAH photooxidation product to the bacteria Photobacterium Phosphoreum and the duckweed Lemna gibba: effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environ Toxicol Chem 16:892–899

    Article  CAS  Google Scholar 

  • Metzger KB et al (2004) Ambient air pollution and cardiovascular emergency department visits. Epidemiology 15:46–56

    Article  Google Scholar 

  • Moller M, Hagen I, Ramdahl T (1985) Mutagenicity of polycyclic aromatic compounds (PAC) identified in source emissions and ambient air. Mutat Res 157:149–156

    Article  CAS  Google Scholar 

  • Ncibi MC, Mahjoub B, Gourdon R (2007) Effects of aging on the extractability of naphthalene and phenanthrene from Mediterranean soils. J Hazard Mater 146:378–384. doi:10.1016/j.jhazmat.2006.12.032

    Article  CAS  Google Scholar 

  • Nieuwoudt C, Pieters R, Quinn LP, Kylin H, Borgen AR, Bouwman H (2011) Polycyclic aromatic hydrocarbons (PAHs) in soil and sediment from industrial, residential, and agricultural areas in Central South Africa: an initial assessment. Soil Sediment Contam 20:188–204. doi:10.1080/15320383.2011.546443

    Article  CAS  Google Scholar 

  • Nishihara T et al (2000) Estrogenic activities of 517 chemicals by yeast two-hybrid assay. J Health Sci 46:282–298

    Article  CAS  Google Scholar 

  • Ollinger K, Brunmark A (1991) Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocyte. J Biol Chem 266:21496–21503

    CAS  Google Scholar 

  • Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013:11. doi:10.1155/2013/158764

    Article  Google Scholar 

  • Peng C, Wang ME, Liao XL (2010) Distribution and risk assessment of polycyclic aromatic hydrocarbons in urban soils: a review. Chin J Appl Ecol 21:514–522

    CAS  Google Scholar 

  • Pernot A, Ouvrard S, Leglize P, Faure P (2013) Protective role of fine silts for PAH in a former industrial soil. Environ Pollut 179:81–87

    Article  CAS  Google Scholar 

  • Pickering RW (2000) Toxicity of polyaromatic hydrocarbons other than benzo(a)pyrene: a review. J Toxicol Cutan Ocul Toxicol 19:55–67

    Article  CAS  Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    Article  CAS  Google Scholar 

  • Pitts JN Jr et al (1982) Mutagens in diesel exhaust particulate—identification and direct activities of 6-nitrobenzo[a]pyrene, 9-nitroanthracene, 1-nitropyrene and 5H-phenanthro[4,5-bcd]pyran-5-one. Mutat Res 103:241–249

    Article  CAS  Google Scholar 

  • Ranc B, Faure P, Croze V, Simonnot MO (2016) Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 312:280–297. doi:10.1016/j.jhazmat.2016.03.068

    Article  CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments–a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Article  CAS  Google Scholar 

  • Reynaud S, Deschaux P (2006) The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquat Toxicol 77:229–238. doi:10.1016/j.aquatox.2005.10.018

    Article  CAS  Google Scholar 

  • Russo L, Rizzo L, Belgiorno V (2010) PAHs contaminated soils remediation by ozone oxidation. Desalin Water Treat 23:161–172

    Article  CAS  Google Scholar 

  • Sidhu S, Gullett B, Striebich R, Klosterman J, Contreras J, De Vito M (2005) Endocrine disrupting chemical emissions from combustion sources: diesel particulate emissions and domestic waste open burn emissions. Atmos Environ 39:801–811

    Article  CAS  Google Scholar 

  • Siegrist RL, Crimi M, Simpkin TJ (2011) In situ chemical oxidation for groundwater remediation. SERDP-ESTCP, Alexandria

    Book  Google Scholar 

  • Simonnot M-O, Croze V (2012) Traitement des sols et nappes par oxydation chimique in situ Techniques de l’ingénieur - Génie des procédés et protection de l’environnement J3983

  • Tsitonaki A, Petri B, Crimi M, Mosbaek H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91

    Article  CAS  Google Scholar 

  • Tunega D, Gerzabek MH, Haberhauer G, Totsche KU, Lischka H (2009) Model study on sorption of polycyclic aromatic hydrocarbons to goethite. J Colloid Interface Sci 330:244–249. doi:10.1016/j.jcis.2008.10.056

    Article  CAS  Google Scholar 

  • Umbuzeiro GA et al (2008) Mutagenicity and DNA adduct formation of PAH, nitro-PAH, and oxy-PAH fractions of atmospheric particulate matter from Sao Paulo, Brazil. Mutat Res 652:72–80

    Article  CAS  Google Scholar 

  • Usman M, Chaudhary A, Biache C, Faure P, Hanna K (2016) Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils. Environ Sci Pollut Res 23:1371–1380. doi:10.1007/s11356-015-5369-7

    Article  CAS  Google Scholar 

  • Wang W et al (2011) Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games. Environ Sci Technol 45:6887–6895. doi:10.1021/es201443z

    Article  CAS  Google Scholar 

  • Wang JZ, Zhu CZ, Chen TH (2013) PAHs in the Chinese environment: levels, inventory mass, source and toxic potency assessment. Environ Sci Process Impacts 15:1104–1112. doi:10.1039/c3em00070b

    Article  CAS  Google Scholar 

  • Wang C, Sun H, Liu H, Wang B (2014) Biodegradation of pyrene by Phanerochaete chrysosporium and enzyme activities in soils: effect of SOM, sterilization and aging. J Environ Sci 26:1135–1144

    Article  CAS  Google Scholar 

  • Weber WJ Jr, McGinley PM, Katz LE (1991) Sorption phenomena in subsurface systems: concepts, models and effects on contaminant fate and transport. Water Res 25:499–528

    Article  CAS  Google Scholar 

  • Wehrer M, Rennert T, Mansfeldt T, Totsche KU (2011) Contaminants at former manufactured gas plants: sources, properties, and processes. Crit Rev Environ Sci Technol 41:1883–1969. doi:10.1080/10643389.2010.481597

    Article  CAS  Google Scholar 

  • Wei R, Ni J, Guo L, Yang L, Yang Y (2014) The effect of aging time on the distribution of pyrene in soil particle-size fractions. Geoderma 232-234:19–23. doi:10.1016/j.geoderma.2014.04.027

    Article  CAS  Google Scholar 

  • Wincent E, Jonsson ME, Bottai M, Lundstedt S, Dreij K (2015) Aryl hydrocarbon receptor activation and developmental toxicity in zebrafish in response to soil extracts containing unsubstituted and oxygenated PAHs. Environ Sci Technol 49:3869–3877. doi:10.1021/es505588s

    Article  CAS  Google Scholar 

  • Winquist E et al (2014) Bioremediation of PAH-contaminated soil with fungi—from laboratory to field scale. Int Biodeterior Biodegrad 86:238–247. doi:10.1016/j.ibiod.2013.09.012

    Article  CAS  Google Scholar 

  • Wu SC, Gschwend PM (1986) Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ Sci Technol 20:717–725

    Article  CAS  Google Scholar 

  • Xie F et al (2006) Assessment of the toxicity of mixtures of copper, 9,10-phenanthrenequinone, and phenanthrene to Daphnia magna: evidence for a reactive oxygen mechanism. Environ Toxicol Chem 25:613–622

    Article  CAS  Google Scholar 

  • Yu H (2002) Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J Environ Scie Health C Environ Carcinog Ecotoxicol Rev 20:149–183

    Article  Google Scholar 

  • Zhao Q et al (2010) Ageing behavior of phenanthrene and pyrene in soils: a study using sodium dodecylbenzenesulfonate extraction. J Hazard Mater 183:881–887. doi:10.1016/j.jhazmat.2010.07.111

    Article  CAS  Google Scholar 

  • Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254-255:228–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the GISFI, a French scientific interest group on soil pollution, (http://www.gisfi.fr) and the French National Association for Research and Technology (ANRT). They also would like to thank the French Environment and Energy Management Agency (ADEME) for funding the BIOXYVAL project which is the framework of this study. Finally, they want to thank ArcelorMittal France, especially Dr. P. Charbonnier, for providing the CP soil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Odile Simonnot.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranc, B., Faure, P., Croze, V. et al. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils. Environ Sci Pollut Res 24, 11265–11278 (2017). https://doi.org/10.1007/s11356-017-8731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8731-0

Keywords

Navigation