Skip to main content
Log in

Impact of clay mineral on air oxidation of PAH-contaminated soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego

    Google Scholar 

  • Benhabib K, Faure P, Sardin M, Simonnot M-O (2010) Characteristics of a solid coal tar sampled from a contaminated soil and of the organics transferred into water. Fuel 89(2):352–359

    Article  CAS  Google Scholar 

  • Benhabib K, Simonnot M-O, Sardin M (2006) PAHs and organic matter partitioning and mass transfer from coal tar particles to water. Environ Sci Technol 40(19):6038–6043

    Article  CAS  Google Scholar 

  • Biache C, Ghislain T, Faure P, Mansuy-Huault L (2011) Low temperature oxidation of a coking plant soil organic matter and its major constituents: An experimental approach to simulate a long term evolution. J Hazard Mater 188(1–3):221–230. doi:10.1016/j.jhazmat.2011.01.102

    Article  CAS  Google Scholar 

  • Biache C, Mansuy-Huault L, Faure P, Munier-Lamy C, Leyval C (2008) Effects of thermal desorption on the composition of two coking plant soils: impact on solvent extractable organic compounds and metal bioavailability. Environ Pollut 156(3):671–677

    Article  CAS  Google Scholar 

  • Birkel U, Gerold G, Niemeyer J (2002) Abiotic reactions of organics on clay mineral surfaces. In: Violante A, Huang PM, Bollag JM, Gianfreda L (eds) Developments in soil science, vol Volume 28, Part A. Elsevier, pp 437–447. doi:10.1016/S0166-2481(02)80067-8

  • Blanchart P, Faure P, Bruggeman C, De Craen M, Michels R (2012) In situ and laboratory investigation of the alteration of Boom Clay (Oligocene) at the air–geological barrier interface within the Mol underground facility (Belgium): consequences on kerogen and bitumen compositions. Appl Geochem 27 (12):2476–2485. doi:10.1016/j.apgeochem.2012.07.016

  • Calemma V, Rausa R, Margarit R, Girardi E (1988) FT-i.r. study of coal oxidation at low temperature. Fuel 67(6):764–770

    Article  CAS  Google Scholar 

  • Choi H, Thiruppathiraja C, Kim S, Rhim Y, Lim J, Lee S (2011) Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal. Fuel Process Technol 92 (10):2005–2010. doi:10.1016/j.fuproc.2011.05.025

  • Elie M, Faure P, Michels R, Landais P, Griffault L (2000) Natural and laboratory oxidation of low-organic-carbon-content sediments: comparison of chemical changes in hydrocarbons. Energy Fuels 14(4):854–861

    Article  CAS  Google Scholar 

  • Faure P, Jeanneau L, Lannuzel F (2006a) Analysis of organic matter by flash pyrolysis-gas chromatography–mass spectrometry in the presence of Na-smectite: When clay minerals lead to identical molecular signature. Org Geochem 37 (12):1900–1912. doi:10.1016/j.orggeochem.2006.09.008

  • Faure P, Landais P (2000) Evidence for clay minerals catalytic effects during low-temperature air oxidation of n-alkanes. Fuel 79(14):1751–1756

    Article  CAS  Google Scholar 

  • Faure P, Landais P, Griffault L (1999) Behavior of organic matter from Callovian shales during low-temperature air oxidation. Fuel 78(13):1515–1525

    Article  CAS  Google Scholar 

  • Faure P, Schlepp L, Burkle-Vitzthum V, Elie M (2003) Low temperature air oxidation of n-alkanes in the presence of Na-smectite. Fuel 82(14):1751–1762

    Article  CAS  Google Scholar 

  • Faure P, Schlepp L, Mansuy-Huault L, Elie M, Jardé E, Pelletier M (2006b) Aromatization of organic matter induced by the presence of clays during flash pyrolysis-gas chromatography–mass spectrometry (PyGC–MS): a major analytical artifact. Journal of Analytical and Applied Pyrolysis 75 (1):1–10. doi:10.1016/j.jaap.2005.02.004

  • Forsey SP, Thomson NR, Barker JF (2010) Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere 79 (6):628–636. doi:10.1016/j.chemosphere.2010.02.027

  • Ghislain T, Faure P, Biache C, Michels R (2010) Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils. Environ Sci Technol 44(22):8547–8552. doi:10.1021/es102832r

    Article  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Keith LH, Telliard WA (1979) Priority pollutants: I. A perspective view. Environ Sci Technol 13(4):416–423

    Article  Google Scholar 

  • Laurent F, Cébron A, Schwartz C, Leyval C (2012) Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere 86(6):659–664. doi:10.1016/j.chemosphere.2011.11.018

    Article  CAS  Google Scholar 

  • Lee B-D, Iso M, Hosomi M (2001) Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density. Chemosphere 42(4):431–435

    Article  CAS  Google Scholar 

  • Michels R, Landais P, Gerard L, Kister J (1993) Elimination des fonctions oxygénées lors de la maturation thermique d’un charbon oxydé artificiellement = Removal of the oxygenated functions during thermal maturation of an artificially oxidized coal. CR Acad Sci, Ser II 316:1375–1381

    CAS  Google Scholar 

  • USEPA (1999) Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites. USEPA, Office of Solid Waste and Emergency Response: Washington (DC),

  • Usman M, Faure P, Hanna K, Abdelmoula M, Ruby C (2012a) Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel 96 (0):270–276. doi:10.1016/j.fuel.2012.01.017

  • Usman M, Faure P, Ruby C, Hanna K (2012b) Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere 87 (3):234–240. doi:10.1016/j.chemosphere.2012.01.001

  • Usman M, Faure P, Ruby C, Hanna K (2012c) Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation. Applied Catalysis B: Environmental 117–118 (0):10–17. doi:10.1016/j.apcatb.2012.01.007

  • Woo OT, Chung WK, Wong KH, Chow AT, Wong PK (2009) Photocatalytic oxidation of polycyclic aromatic hydrocarbons: Intermediates identification and toxicity testing. J Hazard Mater 168 (2–3):1192–1199. doi:10.1016/j.jhazmat.2009.02.170

  • Wu MM, Robbins GA, Winschel RA, Burke FP (1988) Low-temperature coal weathering: its chemical nature and effects on coal properties. Energy Fuels 2(2):150–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the GISFI (French Scientific Interest Group-Industrial Wasteland (http://www.gisfi.prd.fr). We are also grateful to Angelina Razafitianamaharavo for the specific area determination of the bentonite. We thank Dr. Pranay Morajkar for proofreading and language correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coralie Biache.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biache, C., Kouadio, O., Lorgeoux, C. et al. Impact of clay mineral on air oxidation of PAH-contaminated soils. Environ Sci Pollut Res 21, 11017–11026 (2014). https://doi.org/10.1007/s11356-014-2966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2966-9

Keywords

Navigation