Skip to main content
Log in

Use of chemical ionization for GC–MS metabolite profiling

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Metabolite profiling is commonly performed by GC–MS of methoximated trimethylsilyl derivatives. The popularity of this technique owes much to the robust, library searchable spectra produced by electron ionization (EI). However, due to extensive fragmentation, EI spectra of trimethylsilyl derivatives are commonly dominated by trimethylsilyl fragments (e.g. m/z 73 and 147) and higher m/z fragment ions with structural information are at low abundance. Consequently different metabolites can have similar EI spectra, and this presents problems for identification of “unknowns” and the detection and deconvolution of overlapping peaks. The aim of this work is to explore use of positive chemical ionization (CI) as an adjunct to EI for GC–MS metabolite profiling. Two reagent gases differing in proton affinity (CH4 and NH3) were used to analyse 111 metabolite standards and extracts from plant samples. NH3-CI mass spectra were simple and generally dominated by [MH]+ and/or the adduct [M+NH4]+. For the 111 metabolite standards, m/z 73 and 147 were less than 3% of basepeak in NH3-CI and less than 30% of basepeak in CH4-CI. With CH4-CI, [MH]+ was generally present but at lower relative abundance than for NH3-CI. CH4-CI spectra were commonly dominated by losses of CH4 [M+1-16]+, 1–3 TMSOH [M+1-nx90]+, and combinations of CH4 and TMSOH losses [M+1-nx90-16]+. CH4-CI and NH3-CI mass spectra are presented for 111 common metabolites, and CI is used with real samples to help identify overlapping peaks and aid identification via determination of the pseudomolecular ion with NH3-CI and structural information with CH4-CI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abate, S., Ahn, Y. G., Kind, T., Cataldi, T. R. I., & Fiehn, O. (2010). Determination of elemental compositions by gas chromatography/time-of-flight mass spectrometry using chemical and electron ionization. Rapid Communications in Mass Spectrometry, 24, 1172–1180.

    Article  PubMed  CAS  Google Scholar 

  • Bino, R. J., Hall, R. D., Fiehn, O., et al. (2004). Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 9, 418–425.

    Article  PubMed  CAS  Google Scholar 

  • Bristow, T., Harrison, M., & Sims, M. (2010). The application of gas chromatography/atmospheric pressure chemical ionisation time-of-flight mass spectrometry to impurity identification in Pharmaceutical Development. Rapid Communications in Mass Spectrometry, 24, 1673–1681.

    Article  PubMed  CAS  Google Scholar 

  • Bruckner, C. A., Prazen, B. J., & Synovec, R. E. (1998). Comprehensive two dimensional high-speed gas chromatography with chemometric analysis. Analytical Chemistry, 70, 2796–2804.

    Article  CAS  Google Scholar 

  • Budzikiewicz, H., & Meissner, G. (1978). Chemical ionization spectra of trimethylsilylated amino-acids and oligopeptides. Organic Mass Spectrometry, 13, 608–610.

    Article  CAS  Google Scholar 

  • Carrasco-Pancorbo, A., Nevedomskaya, E., Arthen-Engeland, T., et al. (2009). Gas chromatography/atmospheric pressure chemical ionization-time of flight mass spectrometry: Analytical validation and applicability to metabolic profiling. Analytical Chemistry, 81, 10071–10079.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, D. I., Nowlin, J. G., Stillwell, R. N., & Horning, E. C. (1981). Adduct ion formation in chemical ionization mass-spectrometry of non-volatile organic-compounds. Analytical Chemistry, 53, 2007–2013.

    Article  CAS  Google Scholar 

  • Colby, B. N. (1992). Spectral deconvolution for overlapping GC–MS components. Journal of the American Society for Mass Spectrometry, 3, 558–562.

    Article  CAS  Google Scholar 

  • Dougherty, R. C., Roberts, J. D., Binkley, W. W., Chizhov, O. S., Kadentse, V. I., & Solovyov, A. A. (1974). Ammonia–isobutane chemical ionization mass-spectra of oligosaccharide peracetates. Journal of Organic Chemistry, 39, 451–455.

    Article  CAS  Google Scholar 

  • Dunn, W. B. (2008). Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Physical Biology, 5, 24.

    Article  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O. (2008). Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Trac-Trends in Analytical Chemistry, 27, 261–269.

    Article  CAS  Google Scholar 

  • Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72, 3573–3580.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X. F., Pujos-Guillot, E., Martin, J. F., et al. (2009). Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization. Analytical Biochemistry, 393, 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X. F., Pujos-Guillot, E., & Sebedio, J. L. (2010). Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on trimethylsilylation derivatization and GC/MS analysis. Analytical Chemistry, 82, 6447–6456.

    Article  PubMed  CAS  Google Scholar 

  • Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22, 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Halket, J. M., Przyborowska, A., Stein, S. E., Mallard, W. G., Down, S., & Chalmers, R. A. (1999). Deconvolution gas chromatography mass spectrometry of urinary organic acids—Potential for pattern recognition and automated identification of metabolic disorders. Rapid Communications in Mass Spectrometry, 13, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Harada, K., & Fukusaki, E. (2009). Profiling of primary metabolite by means of capillary electrophoresis–mass spectrometry and its application for plant science. Plant Biotechnology, 26, 47–52.

    Article  CAS  Google Scholar 

  • Hasunuma, T., Harada, K., Miyazawa, S. I., Kondo, A., Fukusaki, E., & Miyake, C. (2010). Metabolic turnover analysis by a combination of in vivo C-13-labelling from (CO2)–C-13 and metabolic profiling with CE–MS/MS reveals rate-limiting steps of the C-3 photosynthetic pathway in Nicotiana tabacum leaves. Journal of Experimental Botany, 61, 1041–1051.

    Article  PubMed  CAS  Google Scholar 

  • Herebian, D., Hanisch, B., & Marner, F. J. (2005). Strategies for gathering structural information on unknown peaks in the GC/MS analysis of Corynebacterium glutamicum cell extracts. Metabolomics, 1, 317–324.

    Article  CAS  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee, D. Y., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81, 10038–10048.

    Article  PubMed  CAS  Google Scholar 

  • Leimer, K. R., Rice, R. H., & Gehrke, C. W. (1977). Complete mass-spectra of per-trimethylsilylated amino-acids. Journal of Chromatography, 141, 355–375.

    Article  CAS  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  PubMed  CAS  Google Scholar 

  • Little, J. L., Cleven, C. D., & Brown, S. D. (2011). Identification of “known unknowns” utilizing accurate mass data and chemical abstracts service databases. Journal of the American Society for Mass Spectrometry, 22, 348–359.

    Article  PubMed  CAS  Google Scholar 

  • Major, H. J., Williams, R., Wilson, A. J., & Wilson, I. D. (2006). A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Communications in Mass Spectrometry, 20, 3295–3302.

    Article  PubMed  CAS  Google Scholar 

  • May, P., Wienkoop, S., Kempa, S., et al. (2008). Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics, 179, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Murata, T., & Takahashi, S. (1978). Characterization of o-trimethylsilyl derivatives of d-glucose, d-galactose, and d-mannose by gas–liquid chromatography-chemical-ionization mass-spectrometry with ammonia as reagent gas. Carbohydrate Research, 62, 1–9.

    Article  CAS  Google Scholar 

  • Murata, T., Takahashi, S., Takeda, T., & Onishi, S. (1979). Characterization of o-trimethylsilyl derivatives of d-monosaccharides and di-disaccharides by gas–liquid chromatography-chemical-ionization mass-spectrometry with ammonia as reagent gas. Abstracts of Papers of the American Chemical Society, pp. 115–115.

  • Nappo, M., Berkov, S., Codina, C., et al. (2009). Metabolite profiling of the benthic diatom Cocconeis scutellum by GC–MS. Journal of Applied Phycology, 21, 295–306.

    Article  CAS  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., Robinson, A. B., Teranish, R., & Cary, P. (1971). Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proceedings of the National Academy of Sciences of the United States of America, 68, 2374.

    Article  PubMed  CAS  Google Scholar 

  • Plumb, R. S., Granger, J. H., Stumpf, C. L., et al. (2005). A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry: Application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice. Analyst, 130, 844–849.

    Article  PubMed  CAS  Google Scholar 

  • Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. The Plant Journal, 23, 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Rudewicz, P., & Munson, B. (1986). Effect of ammonia partial-pressure on the sensitivities for oxygenated compounds in ammonia chemical ionization mass-spectrometry. Analytical Chemistry, 58, 2903–2907.

    Article  CAS  Google Scholar 

  • Schauer, N., Steinhauser, D., Strelkov, S., et al. (2005). GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letter, 579, 1332–1337.

    Article  CAS  Google Scholar 

  • Schoots, A. C., & Leclercq, P. A. (1979). Chemical ionization mass-spectrometry of trimethylsilylated carbohydrates and organic-acids retained in uremic serum. Biomedical Mass Spectrometry, 6, 502–507.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  Google Scholar 

  • Trethewey, R. N., Krotzky, A. J., & Wilmitzer, L. (1999). Metabolic profiling: A rosetta stone for genomics? Current Opinion in Biotechnology, 2, 83–85.

    CAS  Google Scholar 

  • Warren, C. R., Aranda, I., & Cano, F. J. (2011). Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress. Metabolomics. doi:10.1007/s11306-11011-10299-y.

  • Williams, R., Lenz, E. M., Wilson, A. J., et al. (2006). A multi-analytical platform approach to the metabonomic analysis of plasma from normal and zucker (fa/fa) obese rats. Molecular Biosystems, 2, 174–183.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. D., Nicholson, J. K., Castro-Perez, J., et al. (2005). High resolution “Ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. Journal of Proteome Research, 4, 591–598.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Discovery Grant and QEII Fellowship from the Australian Research Council (DP0662752). Georgia Warren assisted with collection of plant samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Warren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Relative abundance of major fragment ions in mass spectra of methoximated trimethylsilyl derivatives of metabolites analysed by CH4-CI. Pubchem and CHEBI identifiers are given for all metabolites. Abbreviations are: RI = retention index; BP = basepeak; MH+ ** = MH+ or largest fragment ion with abundance >1%. To simplify presentation only abundant or structurally informative fragment ions are shown (XLS 93 kb)

Supplementary File 1

Library of CH4-CI mass spectra of methoximated trimethylsilyl derivatives of 111 metabolites. Mass spectra were obtained as described in the text. The library is in JCAMP-DX format to enable upload to other software tools (JDX 123 kb)

Supplementary File 2

Library of CH4-CI mass spectra of 21 n-alkanes. Mass spectra were obtained as described in the text. The library is in JCAMP-DX format to enable upload to other software tools (JDX 16 kb)

Supplementary File 3

Library of NH3-CI mass spectra of methoximated trimethylsilyl derivatives of 111 metabolites. Mass spectra were obtained as described in the text. The library is in JCAMP-DX format to enable upload to other software tools (JDX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, C.R. Use of chemical ionization for GC–MS metabolite profiling. Metabolomics 9 (Suppl 1), 110–120 (2013). https://doi.org/10.1007/s11306-011-0346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0346-8

Keywords

Navigation