Skip to main content

Advertisement

Log in

The effect of sinomenine in diabetic neuropathic pain mediated by the P2X3 receptor in dorsal root ganglia

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

An Erratum to this article was published on 28 March 2017

Abstract

Type 2 diabetes mellitus (T2DM) accounts for more than 90% of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. Sinomenine is a natural bioactive component extracted from the Sinomenium acutum and has anti-inflammatory effects. The aim of our study was to investigate the effects of sinomenine on DNP mediated by the P2X3 receptor in dorsal root ganglia (DRG). The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with sinomenine were higher compared with those in T2DM rats. The expression levels of the P2X3 protein and mRNA in T2DM rat DRG were higher compared with those of the control, while those in T2DM rats treated with sinomenine were significantly lower compared with those of the T2DM rats. Sinomenine significantly inhibited P2X3 agonist ATP-activated currents in HEK293 cells transfected with the P2X3 receptor. Sinomenine decreased the phosphorylation and activation of P38MAPK in T2DM DRG. Therefore, sinomenine treatment may suppress the up-regulated expression and activation of the P2X3 receptor and relieve the hyperalgesia potentiated by the activation of P38MAPK in T2DM rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Toth C, Lander J, Wiebe S (2009) The prevalence and impact of chronic pain with neuropathic pain symptoms in the general population. Pain Med 10(5):918–929. doi:10.1111/j.1526-4637.2009.00655.x

    Article  PubMed  Google Scholar 

  2. Colvin LA, Dougherty PM (2015) Peripheral neuropathic pain: signs, symptoms, mechanisms, and causes: are they linked? Br J Anaesth 114(3):361–363. doi:10.1093/bja/aeu323

    Article  CAS  PubMed  Google Scholar 

  3. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70(18):1630–1635. doi:10.1212/01.wnl.0000282763.29778.59

    Article  CAS  PubMed  Google Scholar 

  4. Ma RC, Chan JC (2013) Type 2 diabetes in east Asians: similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci 1281:64–91. doi:10.1111/nyas.12098

    Article  PubMed  PubMed Central  Google Scholar 

  5. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321. doi:10.1016/j.diabres.2011.10.029

    Article  PubMed  Google Scholar 

  6. Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM (2015) Diabetic neuropathic pain: physiopathology and treatment. World J Diabetes 6(3):432–444. doi:10.4239/wjd.v6.i3.432

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, Xu M, Li Y, Hu N, Li J, Mi S, Chen CS, Li G, Mu Y, Zhao J, Kong L, Chen J, Lai S, Wang W, Zhao W, Ning G (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310(9):948–959. doi:10.1001/jama.2013.168118

    Article  CAS  PubMed  Google Scholar 

  8. Tesfaye S, Selvarajah D (2012) Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 28(Suppl 1):8–14. doi:10.1002/dmrr.2239

    Article  PubMed  Google Scholar 

  9. Yoo M, Sharma N, Pasnoor M, Kluding PM (2013) Painful diabetic peripheral neuropathy: presentations, mechanisms, and exercise therapy. J Diabetes Metab Suppl. doi:10.4172/2155-6156.S10-005

    Google Scholar 

  10. Davies M, Brophy S, Williams R, Taylor A (2006) The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care 29(7):1518–1522. doi:10.2337/dc05-2228

    Article  PubMed  Google Scholar 

  11. Morales-Vidal S, Morgan C, Mccoyd M, Hornik A (2012) Diabetic peripheral neuropathy and the management of diabetic peripheral neuropathic pain. Postgrad Med 124(4):145–153. doi:10.3810/pgm.2012.07.2576

    Article  PubMed  Google Scholar 

  12. Singh R, Kishore L, Kaur N (2014) Diabetic peripheral neuropathy: current perspective and future directions. Pharmacol Res 80:21–35. doi:10.1016/j.phrs.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110(3):433–454. doi:10.1016/j.pharmthera.2005.08.013

    Article  CAS  PubMed  Google Scholar 

  14. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797. doi:10.1152/physrev.00043.2006

    Article  CAS  PubMed  Google Scholar 

  15. Burnstock G (2009) Purinergic receptors and pain. Curr Pharm Des 15(15):1717–1735

    Article  CAS  PubMed  Google Scholar 

  16. Gao Y, Xu C, Liang S, Zhang A, Mu S, Wang Y, Wan F (2008) Effect of tetramethylpyrazine on primary afferent transmission mediated by P2X3 receptor in neuropathic pain states. Brain Res Bull 77(1):27–32. doi:10.1016/j.brainresbull.2008.02.026

    Article  CAS  PubMed  Google Scholar 

  17. Liang S, Xu C, Li G, Gao Y (2010) P2X receptors and modulation of pain transmission: focus on effects of drugs and compounds used in traditional Chinese medicine. Neurochem Int 57(7):705–712. doi:10.1016/j.neuint.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  18. Novakovic SD, Kassotakis LC, Oglesby IB, Smith JA, Eglen RM, Ford AP, Hunter JC (1999) Immunocytochemical localization of P2X3 purinoceptors in sensory neurons in naive rats and following neuropathic injury. Pain 80(1–2):273–282

    Article  CAS  PubMed  Google Scholar 

  19. Zhang A, Gao Y, Zhong X, Xu C, Li G, Liu S, Lin J, Li X, Zhang Y, Liu H, Linag S (2010) Effect of sodium ferulate on the hyperalgesia mediated by P2X3 receptor in the neuropathic pain rats. Brain Res 1313:215–221. doi:10.1016/j.brainres.2009.11.067

    Article  CAS  PubMed  Google Scholar 

  20. Burnstock G, Novak I (2013) Purinergic signalling and diabetes. Purinergic Signal 9(3):307–324. doi:10.1007/s11302-013-9359-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng H, Zou L, Xie J, Hong W, Bing W, Zhu G, Lv Q, Xi Z, Liu S, Li G (2016) LncRNA NONRATT021972 siRNA decreases diabetic neuropathic pain mediated by the P2X 3 receptor in dorsal root ganglia. Mol Neurobiol :1–13

  22. Wang S, Xu H, Zou L, Xie J, Wu H, Wu B, Yi Z, Lv Q, Zhang X, Ying M, Liu S, Li G, Gao Y, Xu C, Zhang C, Xue Y, Liang S (2016) LncRNA uc.48+ is involved in diabetic neuropathic pain mediated by the P2X3 receptor in the dorsal root ganglia. Purinergic Signal 12(1):139–148. doi:10.1007/s11302-015-9488-x

    Article  CAS  PubMed  Google Scholar 

  23. Xu GY, Li G, Liu N, Huang LY (2011) Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol Pain 7:60. doi:10.1186/1744-8069-7-60

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao T, Hao J, Wiesenfeld-Hallin Z, Wang DQ, XJ X (2013) Analgesic effect of sinomenine in rodents after inflammation and nerve injury. Eur J Pharmacol 721(1–3):5–11. doi:10.1016/j.ejphar.2013.09.062

    Article  CAS  PubMed  Google Scholar 

  25. Gao T, Shi T, Wang DQ, Wiesenfeld Z (2014) Repeated sinomenine administration alleviates chronic neuropathic pain-like behaviours in rodents without producing tolerance. Scandinavian Journal of Pain 5(4):249–255

    Article  Google Scholar 

  26. Lagerström MC (2015) Sinomenine is a promising analgesic and anti-hyperalgesic for pain and hypersensitivity in rheumatoid arthritis. Scandinavian Journal of Pain 7:15–16

    Article  Google Scholar 

  27. Pertovaara A (2014) Sinomenine against neuropathic pain hypersensitivity. Scandinavian Journal of Pain 5(4):248

    Article  Google Scholar 

  28. Zhu Q, Sun Y, Zhu J, Fang T, Zhang W, Li JX (2014) Antinociceptive effects of sinomenine in a rat model of neuropathic pain. Sci Rep 4:7270. doi:10.1038/srep07270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang AL, Li Z, Yuan M, Yu AC, Zhu X, Tso MO (2007) Sinomenine inhibits activation of rat retinal microglia induced by advanced glycation end products. Int Immunopharmacol 7(12):1552–1558. doi:10.1016/j.intimp.2007.07.030

    Article  CAS  PubMed  Google Scholar 

  30. Yin Q, Xia Y, Wang G (2016) Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway. Biochem Biophys Res Commun 477(4):881–886. doi:10.1016/j.bbrc.2016.06.152

    Article  CAS  PubMed  Google Scholar 

  31. Islam MS (2013) Animal models of diabetic neuropathy: progress since 1960s. J Diabetes Res 2013:149452. doi:10.1155/2013/149452

    PubMed  PubMed Central  Google Scholar 

  32. Li G, Xu H, Zhu S, Xu W, Qin S, Liu S, Tu G, Peng H, Qiu S, Yu S, Zhu Q, Fan B, Zheng C, Li G, Liang S (2013) Effects of neferine on CCL5 and CCR5 expression in SCG of type 2 diabetic rats. Brain Res Bull 90:79–87. doi:10.1016/j.brainresbull.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  33. Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451–472

    CAS  PubMed  Google Scholar 

  34. Liu S, Yu S, Xu C, Peng L, Xu H, Zhang C, Li G, Gao Y, Fan B, Zhu Q, Zheng C, Wu B, Song M, Wu Q, Liang S (2014) Puerarin alleviates aggravated sympathoexcitatory response induced by myocardial ischemia via regulating P2X3 receptor in rat superior cervical ganglia. Neurochem Int 70:39–49. doi:10.1016/j.neuint.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Zou L, Xie J, Xie W, Wen S, Xie Q, Gao Y, Li G, Zhang C, Xu C, Xu H, Wu B, Lv Q, Zhang X, Wang S, Xue Y, Liang S (2016) LncRNA NONRATT021972 siRNA regulates neuropathic pain behaviors in type 2 diabetic rats through the P2X7 receptor in dorsal root ganglia. Mol Brain 9:44. doi:10.1186/s13041-016-0226-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi:10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi:10.1002/jcc.21334

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mansoor SE, Lu W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E (2016) X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature 538(7623):66–71. doi:10.1038/nature19367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang R, Taly A, Lemoine D, Martz A, Cunrath O, Grutter T (2012) Tightening of the ATP-binding sites induces the opening of P2X receptor channels. EMBO J 31(9):2134–2143. doi:10.1038/emboj.2012.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11(6):521–534. doi:10.1016/S1474-4422(12)70065-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Krimon S, Araldi D, Do PF, Tambeli CH, Oliveira-Fusaro MC, Parada CA (2013) P2X3 receptors induced inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors. Pharmacol Biochem Behav 112:49–55. doi:10.1016/j.pbb.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  42. Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95(2):229–274. doi:10.1016/j.pneurobio.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  43. Chizh BA, Illes P (2001) P2X receptors and nociception. Pharmacol Rev 53(4):553–568

    CAS  PubMed  Google Scholar 

  44. Jin SX, Zhuang ZY, Woolf CJ, Ji RR (2003) P38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23(10):4017–4022

    CAS  PubMed  Google Scholar 

  45. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) P38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36(1):57–68

    Article  CAS  PubMed  Google Scholar 

  46. Oh YC, Kang OH, Kim SB, Mun SH, Park CB, Kim YG, Kim YI, Lee YS, Han SH, Keum JH, Shin DW, Ma JY, Kwon DY (2012) Anti-inflammatory effect of sinomenine by inhibition of pro-inflammatory mediators in PMA plus A23187-stimulated HMC-1 cells. Eur Rev Med Pharmacol Sci 16(9):1184–1191

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by grants (nos. 31560276, 81570735, 81171184, 31060139, and 81200853) from the National Natural Science Foundation of China, a grant (no. 20151BBG70250) from the Technology Pedestal and Society Development Project of Jiangxi Province, a grant (no. 20142BAB205028) from the Natural Science Foundation of Jiangxi Province, and grants (nos. GJJ13155 and GJJ14319) from the Educational Department of Jiangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangdong Liang.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Shenqiang Rao and Shuangmei Liu are joint first authors

An erratum to this article is available at http://dx.doi.org/10.1007/s11302-017-9560-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S., Liu, S., Zou, L. et al. The effect of sinomenine in diabetic neuropathic pain mediated by the P2X3 receptor in dorsal root ganglia. Purinergic Signalling 13, 227–235 (2017). https://doi.org/10.1007/s11302-016-9554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9554-z

Keywords

Navigation