Skip to main content
Log in

ATP as a mediator of macula densa cell signalling

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Within each nephro-vascular unit, the tubule returns to the vicinity of its own glomerulus. At this site, there are specialised tubular cells, the macula densa cells, which sense changes in tubular fluid composition and transmit information to the glomerular arterioles resulting in alterations in glomerular filtration rate and blood flow. Work over the last few years has characterised the mechanisms that lead to the detection of changes in luminal sodium chloride and osmolality by the macula densa cells. These cells are true “sensor cells” since intracellular ion concentrations and membrane potential reflect the level of luminal sodium chloride concentration. An unresolved question has been the nature of the signalling molecule(s) released by the macula densa cells. Currently, there is evidence that macula densa cells produce nitric oxide via neuronal nitric oxide synthase (nNOS) and prostaglandin E2 (PGE2) through cyclooxygenase 2 (COX 2)-microsomal prostaglandin E synthase (mPGES). However, both of these signalling molecules play a role in modulating or regulating the macula-tubuloglomerular feedback system. Direct macula densa signalling appears to involve the release of ATP across the basolateral membrane through a maxi-anion channel in response to an increase in luminal sodium chloride concentration. ATP that is released by macula densa cells may directly activate P2 receptors on adjacent mesangial cells and afferent arteriolar smooth muscle cells, or the ATP may be converted to adenosine. However, the critical step in signalling would appear to be the regulated release of ATP across the basolateral membrane of macula densa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barajas L (1979) Anatomy of the juxtaglomerular apparatus. Am J Physiol 237:F333–F343

    PubMed  CAS  Google Scholar 

  2. Schafer JA, Troutman SL, Andreoli TE (1974) Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol 64:582–607

    Article  PubMed  CAS  Google Scholar 

  3. Burg MB, Green N (1973) Function of the thick ascending limb of Henle's loop. Am J Physiol 224:659–668

    PubMed  CAS  Google Scholar 

  4. Rocha AS, Kudo LH (1982) Water, urea, sodium, chloride, and potassium transport in the in vitro isolated perfused papillary collecting duct. Kidney Int 22:485–491

    Article  PubMed  CAS  Google Scholar 

  5. Barajas L, Salido EC, Liu L, Powers KV (1995) The juxtaglomerular apparatus: a morphologic perspective. In: Laragh JH et al (eds) Hypertension: pathophysiology, diagnosis and management. Raven, New York, pp 1335–1348

    Google Scholar 

  6. Komlosi P, Fintha A, Bell PD (2005) Renal cell-to-cell communication via extracellular ATP. Physiology (Bethesda) 20:86–90

    CAS  Google Scholar 

  7. Bell PD, St John PL, Speyer M, Abrahamson DR (1992) Permeability of the macula densa basement membrane area to high molecular weight molecules. Ren Physiol Biochem 15:89–98

    PubMed  CAS  Google Scholar 

  8. Iijima K, Moore LC, Goligorsky MS (1991) Syncytial organization of cultured rat mesangial cells. Am J Physiol 260:F848–F855

    PubMed  CAS  Google Scholar 

  9. Peti-Peterdi J (2006) Calcium wave of tubuloglomerular feedback. Am J Physiol Renal Physiol 291:F473–F480

    Article  PubMed  CAS  Google Scholar 

  10. Pricam C, Humbert F, Perrelet A, Orci L (1974) Gap junctions in mesangial and lacis cells. J Cell Biol 63:349–354

    Article  PubMed  CAS  Google Scholar 

  11. Goligorsky MS, Iijima K, Krivenko Y, Tsukahara H, Hu Y, Moore LC (1997) Role of mesangial cells in macula densa to afferent arteriole information transfer. Clin Exp Pharmacol Physiol 24:527–531

    Article  PubMed  CAS  Google Scholar 

  12. Navar LG and Bell PD (2004) Romancing the macula densa at UAB. Kidney Int Suppl :S34-S40

  13. Ullrich KJ, Schmidt-Nielsen B, O'Dell R, Pehling G, Gottschalk CW, Lassiter WE, Mylle M (1963) Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Am J Physiol 204:527–531

    PubMed  CAS  Google Scholar 

  14. Bell PD, Lapointe JY, Peti-Peterdi J (2003) Macula densa cell signaling. Annu Rev Physiol 65:481–500

    Article  PubMed  CAS  Google Scholar 

  15. Bell PD, Lapointe JY (1997) Characteristics of membrane transport processes of macula densa cells. Clin Exp Pharmacol Physiol 24:541–547

    Article  PubMed  CAS  Google Scholar 

  16. Bell PD, Navar LG (1982) Relationship between tubulo-glomerular feedback responses and perfusate hypotonicity. Kidney Int 22:234–239

    Article  PubMed  CAS  Google Scholar 

  17. Bell PD, Navar LG (1979) Stop-flow pressure feedback responses during reduced renal vascular resistance in the dog. Am J Physiol 237:F204–F209

    PubMed  CAS  Google Scholar 

  18. Bell PD, Thomas C, Williams RH, Navar LG (1978) Filtration rate and stop-flow pressure feedback responses to nephron perfusion in the dog. Am J Physiol 234:F154–F165

    PubMed  CAS  Google Scholar 

  19. Castrop H, Schweda F, Mizel D, Huang Y, Briggs J, Kurtz A, Schnermann J (2004) Permissive role of nitric oxide in macula densa control of renin secretion. Am J Physiol Renal Physiol 286:F848–F857

    Article  PubMed  CAS  Google Scholar 

  20. Schnermann J, Davis JM, Wunderlich P, Levine DZ, Horster M (1971) Technical problems in the micropuncture determination of nephron filtration rate and their functional implications. Pflugers Arch 329:307–320

    Article  PubMed  CAS  Google Scholar 

  21. Schnermann J, Ploth DW, Hermle M (1976) Activation of tubulo-glomerular feedback by chloride transport. Pflugers Arch 362:229–240

    Article  PubMed  CAS  Google Scholar 

  22. Schnermann J (1998) Juxtaglomerular cell complex in the regulation of renal salt excretion. Am J Physiol 274:R263–R279

    PubMed  CAS  Google Scholar 

  23. Schnermann J, Briggs JP (2000) Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion. In: Seldin DW et al (eds) The Kidney Physiology & Pathophysiology. Lippincott Williams & Wilkins, Philadephia, pp 945–980

    Google Scholar 

  24. Barajas L, Powers K, Carretero O, Scicli AG, Inagami T (1986) Immunocytochemical localization of renin and kallikrein in the rat renal cortex. Kidney Int 29:965–970

    Article  PubMed  CAS  Google Scholar 

  25. Peti-Peterdi J, Fintha A, Fuson AL, Tousson A, Chow RH (2004) Real-time imaging of renin release in vitro. Am J Physiol Renal Physiol 287:F329–F335

    Article  PubMed  CAS  Google Scholar 

  26. Schweda F, Wagner C, Kramer BK, Schnermann J, Kurtz A (2003) Preserved macula densa-dependent renin secretion in A1 adenosine receptor knockout mice. Am J Physiol Renal Physiol 284:F770–F777

    PubMed  CAS  Google Scholar 

  27. Bell PD, Lapointe JY, Cardinal J, Chang YS (1991) Transport pathways in macula densa cells. Kidney Int Suppl 32:S59–S64

    PubMed  CAS  Google Scholar 

  28. Laamarti MA, Lapointe JY (1997) Determination of NH4+/NH3 fluxes across apical membrane of macula densa cells: a quantitative analysis. Am J Physiol 273:F817–F824

    PubMed  CAS  Google Scholar 

  29. Lapointe JY, Laamarti A, Bell PD (1998) Ionic transport in macula densa cells. Kidney Int Suppl 67:S58–S64

    Article  PubMed  CAS  Google Scholar 

  30. Komlosi P, Fintha A, Bell PD (2006) Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality. Kidney Int 70:865–871

    Article  PubMed  CAS  Google Scholar 

  31. Bell PD, Lapointe JY, Cardinal J (1989) Direct measurement of basolateral membrane potentials from cells of the macula densa. Am J Physiol 257:463–468

    Google Scholar 

  32. Laamarti MA, Bell PD, Lapointe JY (1998) Transport and regulatory properties of the apical Na-K-2Cl cotransporter of macula densa cells. Am J Physiol 275:703–709

    Google Scholar 

  33. Lapointe JY, Laamarti A, Hurst AM, Fowler BC, Bell PD (1995) Activation of Na:2Cl:K cotransport by luminal chloride in macula densa cells. Kidney Int 47:752–757

    Article  PubMed  CAS  Google Scholar 

  34. Lapointe JY, Bell PD, Cardinal J (1990) Direct evidence for apical Na+:2Cl−:K+ cotransport in macula densa cells. Am J Physiol 258:F1466–F1469

    PubMed  CAS  Google Scholar 

  35. Lapointe JY, Bell PD, Hurst AM, Cardinal J (1991) Basolateral ionic permeabilities of macula densa cells. Am J Physiol 260:F856–F860

    PubMed  CAS  Google Scholar 

  36. Hurst AM, Lapointe JY, Laamarti A, Bell PD (1994) Basic properties and potential regulators of the apical K+ channel in macula densa cells. J Gen Physiol 103:1055–1070

    Article  PubMed  CAS  Google Scholar 

  37. Fowler BC, Chang YS, Laamarti A, Higdon M, Lapointe JY, Bell PD (1995) Evidence for apical sodium proton exchange in macula densa cells. Kidney Int 47:746–751

    Article  PubMed  CAS  Google Scholar 

  38. Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680

    Article  PubMed  CAS  Google Scholar 

  39. Peti-Peterdi J, Bebok Z, Lapointe JY, Bell PD (2002) Novel regulation of cell [Na(+)] in macula densa cells: apical Na(+) recycling by H-K-ATPase. Am J Physiol Renal Physiol 282:F324–F329

    PubMed  Google Scholar 

  40. Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti-Peterdi J, Manabe K, Kovacs G, Okada Y (2003) Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci U S A 100:4322–4327

    Article  PubMed  CAS  Google Scholar 

  41. Uchida S (2000) Physiological role of CLC-K1 chloride channel in the kidney. Nephrol Dial Transplant 15(Suppl 6):14–15

    Article  PubMed  CAS  Google Scholar 

  42. Uchida S, Sasaki S (2005) Function of chloride channels in the kidney. Annu Rev Physiol 67:759–778

    Article  PubMed  CAS  Google Scholar 

  43. Ren Y, Yu H, Wang H, Carretero OA, Garvin JL (2001) Nystatin and valinomycin induce tubuloglomerular feedback. Am J Physiol Renal Physiol 281:F1102–F1108

    PubMed  CAS  Google Scholar 

  44. Peti-Peterdi J, Morishima S, Bell PD, Okada Y (2002) Two-photon excitation fluorescence imaging of the living juxtaglomerular apparatus. Am J Physiol Renal Physiol 283:F197–F201

    PubMed  CAS  Google Scholar 

  45. Peti-Peterdi J, Bell PD (1999) Cytosolic [Ca2+] signaling pathway in macula densa cells. Am J Physiol 277:F472–F476

    PubMed  CAS  Google Scholar 

  46. Bell PD, Navar LG (1982) Cytoplasmic calcium in the mediation of macula densa tubulo-glomerular feedback responses. Science 215:670–673

    Article  PubMed  CAS  Google Scholar 

  47. Ren Y, Liu R, Carretero OA, Garvin JL (2003) Increased intracellular Ca++ in the macula densa regulates tubuloglomerular feedback. Kidney Int 64:1348–1355

    Article  PubMed  CAS  Google Scholar 

  48. Thurau K, Valtin H, Schnermann J (1968) Kidney. Annu Rev Physiol 30:441–524

    Article  PubMed  CAS  Google Scholar 

  49. Navar LG, Inscho EW, Majid SA, Imig JD, Harrison-Bernard LM, Mitchell KD (1996) Paracrine regulation of the renal microcirculation. Physiol Rev 76:425–536

    PubMed  CAS  Google Scholar 

  50. Skott O, Briggs JP (1987) Direct demonstration of macula densa-mediated renin secretion. Science 237:1618–1620

    Article  PubMed  CAS  Google Scholar 

  51. Bell PD, Peti-Peterdi J (1999) Angiotensin II stimulates macula densa basolateral sodium/hydrogen exchange via type 1 angiotensin II receptors. J Am Soc Nephrol 10(Suppl 11):S225–S229

    PubMed  CAS  Google Scholar 

  52. Kovacs G, Peti-Peterdi J, Rosivall L, Bell PD (2002) Angiotensin II directly stimulates macula densa Na-2Cl-K cotransport via apical AT(1) receptors. Am J Physiol Renal Physiol 282:F301–F306

    PubMed  Google Scholar 

  53. Navar LG (1998) Integrating multiple paracrine regulators of renal microvascular dynamics. Am J Physiol 274:F433–F444

    PubMed  CAS  Google Scholar 

  54. Navar LG, Imig JD, Zou L, Wang CT (1997) Intrarenal production of angiotensin II. Semin Nephrol 17:412–422

    PubMed  CAS  Google Scholar 

  55. Persson PB (2003) Renin: origin, secretion and synthesis. J Physiol 552:667–671

    Article  PubMed  CAS  Google Scholar 

  56. Schnermann J, Briggs JP (1990) Restoration of tubuloglomerular feedback in volume-expanded rats by angiotensin II. Am J Physiol 259:F565–F572

    PubMed  CAS  Google Scholar 

  57. Schnermann JB, Traynor T, Yang T, Huang YG, Oliverio MI, Coffman T, Briggs JP (1997) Absence of tubuloglomerular feedback responses in AT1A receptor- deficient mice. Am J Physiol 273:315–320

    Google Scholar 

  58. Vallon V (2003) Tubuloglomerular feedback in the kidney: insights from gene-targeted mice. Pflugers Arch 445:470–476

    PubMed  CAS  Google Scholar 

  59. Bachmann S, Bosse HM, Mundel P (1995) Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol 268:F885–F898

    PubMed  CAS  Google Scholar 

  60. Deng A, Wead LM, Blantz RC (2004) Temporal adaptation of tubuloglomerular feedback: Effects of COX-2. Kidney Int 66:2348–2353

    Article  PubMed  CAS  Google Scholar 

  61. Fischer E, Schnermann J, Briggs JP, Kriz W, Ronco PM, Bachmann S (1995) Ontogeny of NO synthase and renin in juxtaglomerular apparatus of rat kidneys. Am J Physiol 268:F1164–F1176

    PubMed  CAS  Google Scholar 

  62. Harris RC (2002) Cyclooxygenase-2 and the kidney: functional and pathophysiological implications. J Hypertens Suppl 20:S3–S9

    Article  PubMed  CAS  Google Scholar 

  63. Kovacs G, Komlosi P, Fuson A, Peti-Peterdi J, Rosivall L, Bell PD (2003) Neuronal nitric oxide synthase: its role and regulation in macula densa cells. J Am Soc Nephrol 14:2475–2483

    Article  PubMed  CAS  Google Scholar 

  64. Liu R, Persson AE (2004) Angiotensin II stimulates calcium and nitric oxide release from Macula densa cells through AT1 receptors. Hypertension 43:649–653

    Article  PubMed  CAS  Google Scholar 

  65. Liu R, Carretero OA, Ren Y, Garvin JL (2005) Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback. Kidney Int 67:1837–1843

    Article  PubMed  CAS  Google Scholar 

  66. Ollerstam A, Persson AE (2002) Macula densa neuronal nitric oxide synthase. Cardiovasc Res 56:189–196

    Article  PubMed  CAS  Google Scholar 

  67. Paliege A, Mizel D, Medina C, Pasumarthy A, Huang YG, Bachmann S, Briggs JP, Schnermann JB, Yang T (2004) Inhibition of nNOS expression in the macula densa by COX-2 derived prostaglandin E2. Am J Physiol Renal Physiol 287:F152–F159

    Article  PubMed  CAS  Google Scholar 

  68. Ren YL, Garvin JL, Carretero OA (2000) Role of macula densa nitric oxide and cGMP in the regulation of tubuloglomerular feedback. Kidney Int 58:2053–2060

    Article  PubMed  CAS  Google Scholar 

  69. Tojo A, Onozato ML, Fukuda S, Asaba K, Kimura K, Fujita T (2004) Nitric oxide generated by nNOS in the macula densa regulates the afferent arteriolar diameter in rat kidney. Med Electron Microsc 37:236–241

    Article  PubMed  CAS  Google Scholar 

  70. Wang H, Carretero OA, Garvin JL (2002) Nitric oxide produced by THAL nitric oxide synthase inhibits TGF. Hypertension 39:662–666

    Article  PubMed  CAS  Google Scholar 

  71. Wilcox CS, Deng X, Welch WJ (1998) NO generation and action during changes in salt intake: roles of nNOS and macula densa. Am J Physiol 274:R1588–R1593

    PubMed  CAS  Google Scholar 

  72. Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH (1992) Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci USA 89:11993–11997

    Article  PubMed  CAS  Google Scholar 

  73. Liu R, Pittner J, Persson AE (2002) Changes of cell volume and nitric oxide concentration in macula densa cells caused by changes in luminal NaCl concentration. J Am Soc Nephrol 13:2688–2696

    Article  PubMed  CAS  Google Scholar 

  74. Wilcox CS, Welch WJ (1996) TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension. Kidney Int Suppl 55:S9–S13

    PubMed  CAS  Google Scholar 

  75. Peti-Peterdi J, Komlosi P, Fuson AL, Guan Y, Schneider A, Qi Z, Redha R, Rosivall L, Breyer MD, Bell PD (2003) Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. J Clin Invest 112:76–82

    PubMed  CAS  Google Scholar 

  76. Yang T, Park JM, Arend L, Huang Y, Topaloglu R, Pasumarthy A, Praetorius H, Spring K, Briggs JP, Schnermann J (2000) Low chloride stimulation of prostaglandin E2 release and cyclooxygenase-2 expression in a mouse macula densa cell line. J Biol Chem 275:37922–37929

    Article  PubMed  CAS  Google Scholar 

  77. Cheng HF, Wang JL, Zhang MZ, McKanna JA, Harris RC (2000) Nitric oxide regulates renal cortical cyclooxygenase-2 expression. Am J Physiol Renal Physiol 279:F122–F129

    PubMed  CAS  Google Scholar 

  78. Harris RC, McKanna JA, Akai Y, Jacobson HR, Dubois RN, Breyer MD (1994) Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest 94:2504–2510

    Article  PubMed  CAS  Google Scholar 

  79. Harris RC, Breyer MD (2001) Physiological regulation of cyclooxygenase-2 in the kidney. Am J Physiol Renal Physiol 281:F1–F11

    PubMed  CAS  Google Scholar 

  80. Fuson AL, Komlosi P, Unlap TM, Bell PD, Peti-Peterdi J (2003) Immunolocalization of a microsomal prostaglandin E synthase in rabbit kidney. Am J Physiol Renal Physiol 285:F558–F564

    PubMed  Google Scholar 

  81. Inscho EW (2009) ATP, P2 receptors and the renal microcirculation. Pur. Sig., doi:10.1007/s11302-009-9147-1

  82. Inscho EW, Cook AK, Mui V, Miller J (1998) Direct assessment of renal microvascular responses to P2-purinoceptor agonists. Am J Physiol 274:718–727

    Google Scholar 

  83. Inscho EW, Carmines PK, Navar LG (1991) Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation. Hypertension 17:1033–1037

    PubMed  CAS  Google Scholar 

  84. Inscho EW (2001) P2 receptors in regulation of renal microvascular function. Am J Physiol Renal Physiol 280:F927–F944

    PubMed  CAS  Google Scholar 

  85. Inscho EW, Schroeder AC, Deichmann PC, Imig JD (1999) ATP-mediated Ca2+ signaling in preglomerular smooth muscle cells. Am J Physiol 276:F450–F456

    PubMed  CAS  Google Scholar 

  86. Inscho EW, Cook AK, Navar LG (1996) Pressure-mediated vasoconstriction of juxtamedullary afferent arterioles involves P2-purinoceptor activation. Am J Physiol 271:F1077–F1085

    PubMed  CAS  Google Scholar 

  87. Majid DS, Inscho EW, Navar LG (1999) P2 purinoceptor saturation by adenosine triphosphate impairs renal autoregulation in dogs. J Am Soc Nephrol 10:492–498

    PubMed  CAS  Google Scholar 

  88. Inscho EW, Cook AK, Imig JD, Vial C, Evans RJ (2003) Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest 112:1895–1905

    PubMed  CAS  Google Scholar 

  89. Osswald H, Nabakowski G, Hermes H (1980) Adenosine as a possible mediator of metabolic control of glomerular filtration rate. Int J Biochem 12:263–267

    Article  PubMed  CAS  Google Scholar 

  90. Casellas D, Moore LC (1990) Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles. Am J Physiol 258:F660–F669

    PubMed  CAS  Google Scholar 

  91. Inscho EW, Cook AK, Imig JD, Vial C, Evans RJ (2004) Renal autoregulation in P2X knockout mice. Acta Physiol Scand 181:445–453

    Article  PubMed  CAS  Google Scholar 

  92. Navar LG, Burke TJ, Robinson RR, Clapp JR (1974) Distal tubular feedback in the autoregulation of single nephron glomerular filtration rate. J Clin Invest 53:516–525

    Article  PubMed  CAS  Google Scholar 

  93. Navar LG, Bell PD, Burke TJ (1982) Role of a macula densa feedback mechanism as a mediator of renal autoregulation. Kidney Int Suppl 12:S157–S164

    PubMed  CAS  Google Scholar 

  94. Loutzenhiser R, Griffin K, Williamson G, Bidani A (2006) Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol Regul Integr Comp Physiol 290:R1153–R1167

    PubMed  CAS  Google Scholar 

  95. Nishiyama A, Navar LG (2002) Response to J. Schnermann: adenosine mediates tubuloglomerular feedback. Am J Physiol Regul Integr Comp Physiol 283:Ra278–Ra280

    Google Scholar 

  96. Nishiyama A, Navar LG (2002) ATP mediates tubuloglomerular feedback. Am J Physiol Regul Integr Comp Physiol 283:R273–R275

    PubMed  CAS  Google Scholar 

  97. Nishiyama A, Majid DS, Walker MIII, Miyatake A, Navar LG (2001) Renal interstitial atp responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity. Hypertension 37:753–759

    PubMed  CAS  Google Scholar 

  98. Nishiyama A, Majid DS, Taher KA, Miyatake A, Navar LG (2000) Relation between renal interstitial ATP concentrations and autoregulation-mediated changes in renal vascular resistance. Circ Res 86:656–662

    PubMed  CAS  Google Scholar 

  99. Burnstock G (1997) The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 36:1127–1139

    Article  PubMed  CAS  Google Scholar 

  100. Baricordi OR, Ferrari D, Melchiorri L, Chiozzi P, Hanau S, Chiari E, Rubini M, di Virgilio F (1996) An ATP-activated channel is involved in mitogenic stimulation of human T lymphocytes. Blood 87:682–690

    PubMed  CAS  Google Scholar 

  101. Schwiebert EM, Zsembery A (2003) Extracellular ATP as a signaling molecule for epithelial cells. Biochim Biophys Acta 1615:7–32

    Article  PubMed  CAS  Google Scholar 

  102. Schwiebert EM (2001) ATP release mechanisms, ATP receptors and purinergic signalling along the nephron. Clin Exp Pharmacol Physiol 28:340–350

    Article  PubMed  CAS  Google Scholar 

  103. Hovater MB, Olteanu D, Hanson EL, Cheng NL, Siroky B, Fintha A, Komlosi P, Liu W, Satlin LM, Bell PD, Yoder BK, Schwiebert EM (2008) Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals. Purinergic Signal 4:155–170

    Article  PubMed  CAS  Google Scholar 

  104. Hanss B, Leal-Pinto E, Bruggeman LA, Copeland TD, Klotman PE (1998) Identification and characterization of a cell membrane nucleic acid channel. Proc Natl Acad Sci USA 95:1921–1926

    Article  PubMed  CAS  Google Scholar 

  105. McCulloch F, Chambrey R, Eladari D, Peti-Peterdi J (2005) Localization of connexin 30 in the luminal membrane of cells in the distal nephron. Am J Physiol Renal Physiol 289:F1304–F1312

    Article  PubMed  CAS  Google Scholar 

  106. Egan ME (2002) CFTR-associated ATP transport and release. Methods Mol Med 70:395–406

    PubMed  CAS  Google Scholar 

  107. Schnermann J, Marver D (1986) ATPase activity in macula densa cells of the rabbit kidney. Pflugers Arch 407:82–86

    Article  PubMed  CAS  Google Scholar 

  108. Komlosi P, Banizs B, Fintha A, Steele SL, Zhang ZR, Bell PD (2008) Oscillating cortical thick ascending limb cells at the juxtaglomerular apparatus. J Am Soc Nephrol 19:1940–1946

    Article  PubMed  CAS  Google Scholar 

  109. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102

    Article  PubMed  CAS  Google Scholar 

  110. Liu R, Bell PD, Peti-Peterdi J, Kovacs G, Johansson A, Persson AE (2002) Purinergic receptor signaling at the basolateral membrane of macula densa cells. J Am Soc Nephrol 13:1145–1151

    Article  PubMed  CAS  Google Scholar 

  111. Bell PD, Lapointe JY, Sabirov R, Hayashi S, Peti-Peterdi J, Manabe K, Kovacs G, Okada Y (2003) Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci USA 100:4322–4327

    Article  PubMed  CAS  Google Scholar 

  112. Okada SF, O'neal WK, Huang P, Nicholas RA, Ostrowski LE, Craigen WJ, Lazarowski ER, Boucher RC (2004) Voltage-dependent Anion Channel-1 (VDAC-1) Contributes to ATP Release and Cell Volume Regulation in Murine Cells. J Gen Physiol 124:513–526

    Article  PubMed  CAS  Google Scholar 

  113. Hazama A, Fan HT, Abdullaev I, Maeno E, Tanaka S, Ando-Akatsuka Y, Okada Y (2000) Swelling-activated, cystic fibrosis transmembrane conductance regulator-augmented ATP release and Cl conductances in murine C127 cells. J Physiol 523(Pt 1):1–11

    Article  PubMed  CAS  Google Scholar 

  114. Sabirov RZ, Dutta AK, Okada Y (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J Gen Physiol 118:251–266

    Article  PubMed  CAS  Google Scholar 

  115. Sabirov RZ, Sheiko T, Liu H, Deng D, Okada Y, Craigen WJ (2006) Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins. J Biol Chem 281:1897–1904

    Article  PubMed  CAS  Google Scholar 

  116. Sabirov RZ, Prenen J, Tomita T, Droogmans G, Nilius B (2000) Reduction of ionic strength activates single volume-regulated anion channels (VRAC) in endothelial cells. Pflugers Arch 439:315–320

    Article  PubMed  CAS  Google Scholar 

  117. Toma I, Bansal E, Meer EJ, Kang JJ, Vargas SL, Peti-Peterdi J (2008) Connexin 40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol 294:R1769–R1776

    PubMed  CAS  Google Scholar 

  118. Komlosi P, Peti-Peterdi J, Fuson AL, Fintha A, Rosivall L, Bell PD (2004) Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am J Physiol Renal Physiol 286:F1054–F1058

    Article  PubMed  CAS  Google Scholar 

  119. Gutierrez AM, Lou X, Erik A, Persson G, Ring A (1999) Ca2+ response of rat mesangial cells to ATP analogues. Eur J Pharmacol 369:107–112

    Article  PubMed  CAS  Google Scholar 

  120. Kishore BK, Isaac J, Fausther M, Tripp SR, Shi H, Gill PS, Braun N, Zimmermann H, Sevigny J, Robson SC (2005) Expression of NTPDase1 and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling. Am J Physiol Renal Physiol 288:F1032–F1043

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute of Diabetes and Digestive and Kidney Disease (DK-32032) and by a Scientist Development Award from the American Heart Association and a VA Merit Grant. We thank Ms. Barbara Harris for administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Darwin Bell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, P.D., Komlosi, P. & Zhang, ZR. ATP as a mediator of macula densa cell signalling. Purinergic Signalling 5, 461–471 (2009). https://doi.org/10.1007/s11302-009-9148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9148-0

Keywords

Navigation