Skip to main content
Log in

Determination of Rare Earth Elements by Solid Phase Extraction Using Chemically Modified Amberlite XAD-4 Resin and Inductively Coupled Plasma-Optical Emission Spectrometry

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A new solid phase extraction method was developed for the preconcentration and determination of the rare earth elements (REEs) Pr, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu at trace levels using a mini-column packed with 8-hydroxy-2-quinolinecarboxaldehyde functionalized Amberlite XAD-4 resin. The REE ions were adsorbed onto the resin and then eluted with 2 mL of 1.0 mol L−1 HNO3 solution and determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). In order to achieve the best performance for the method, the effects of several parameters such as sample pH, sample and eluent flow rate, sample volume, and matrix ions on the method efficiency were investigated. Under the optimum conditions, detection limits between 0.010 and 0.420 μg L−1 for a preconcentration factor of 12.5 were achieved. The sorption capacities for the resin were found to range between 49.6 μmol g−1 (for Yb) and 112.4 μmol g−1 (for Pr). In order to verify the accuracy of the developed method, a certified reference material (SPS-SW2 Batch 127 surface water) was analyzed, and the results obtained were in good agreement with the certified values. The method was also successfully applied to the determination of REEs in water samples with recoveries in the range of 88.4–100.5 % being obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal, Y. K. (2004). Liquid–liquid extraction, separation, preconcentration, and ICP-AES determination of lanthanum and cerium with N-phenyl-(1,2-methanofullerene C60)61-formohydroxamic acid. Fullerenes, Nanotubes, and Carbon Nanostructures, 12, 545–570.

    Article  CAS  Google Scholar 

  • Bahramifar, N., & Yamini, Y. (2005). On-line preconcentration of some rare earth elements in water samples using C18-cartridge modified with l-(2-pyridylazo) 2-naphtol (PAN) prior to simultaneous determination by inductively coupled plasma optical emission spectrometry (ICP–OES). Analytica Chimica Acta, 540, 325–332.

    Article  CAS  Google Scholar 

  • Chen, S., Xiao, M., Lu, D., & Zhan, X. (2007). Carbon nanofibers as solid‐phase extraction adsorbent for the preconcentration of trace rare earth elements and their determination by inductively coupled plasma mass spectrometry. Analytical Letters, 40, 2105–2115.

    Article  CAS  Google Scholar 

  • Chen, S., Zhu, S., & Lu, D. (2013). Titanium dioxide nanotubes as solid-phase extraction adsorbent for on-line preconcentration and determination of trace rare earth elements by inductively coupled plasma mass spectrometry. Microchemical Journal, 110, 89–93.

    Article  CAS  Google Scholar 

  • Costas, M., Lavilla, I., Gil, S., Pena, F., de la Calle, I., Cabaleiro, N., & Bendicho, C. (2010). Evaluation of ultrasound-assisted extraction as sample pre-treatment for quantitative determination of rare earth elements in marine biological tissues by inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 679, 49–55.

    Article  CAS  Google Scholar 

  • Dave, S. R., Kaur, H., & Menon, S. K. (2010). Selective solid-phase extraction of rare earth elements by the chemically modified Amberlite XAD-4 resin with azacrown ether. Reactive & Functional Polymers, 70, 692–698.

    Article  CAS  Google Scholar 

  • De Vito, I. E., Olsina, R. A., & Masi, A. N. (2000). Enrichment method for trace amounts of rare earth elements using chemofiltration and XRF determination. Fresenius Journal of Analytical Chemistry, 368, 392–396.

    Article  Google Scholar 

  • Hongchun, X., Bin, H., & Zucheng, J. (2000). Micro-column separation/preconcentration combined with fluuorinating electrothermal vaporization-inductively coupled plasma atomic emission spectrometry for determination of ultratrace rare earth elements. Journal of Analytical Atomic Spectrometry, 15, 759–761.

    Article  CAS  Google Scholar 

  • Hsieh, H. F., Chena, Y. H., & Wang, C. F. (2011). A magnesium hydroxide preconcentration/matrix reduction method for the analysis of rare earth elements in water samples using laser ablation inductively coupled plasma mass spectrometry. Talanta, 85, 983–990.

    Article  CAS  Google Scholar 

  • Huang, C., Jiang, Z., & Hu, B. (2007). Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals in environmental samples. Talanta, 73, 274–281.

    Article  CAS  Google Scholar 

  • Kajiya, T., Aihara, M., & Hirata, S. (2004). Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with on-line column pre-concentration using 8-quinolinole-immobilized fluorinated metal alkoxide glass. Spectrochimica Acta B, 59, 543–550.

    Article  Google Scholar 

  • Karadaş, C., & Kara, D. (2013). On-line preconcentration and determination of trace elements in waters and reference cereal materials by flow injection – FAAS using newly synthesized 8-hydroxy-2-quinoline carboxaldehyde functionalized Amberlite XAD-4. Journal of Food Composition and Analysis, 32, 90–98.

    Article  Google Scholar 

  • Karadaş, C., Kara, D., & Fisher, A. (2011). Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with off-line column preconcentration using 2,6-diacetylpyridine functionalized Amberlite XAD-4. Analytica Chimica Acta, 689, 184–189.

    Article  Google Scholar 

  • Kumar, B. N., Radhika, S., & Reddy, B. R. (2010). Solid–liquid extraction of heavy rare earths from phosphoric acid solutions using Tulsion CH-96 and T-PAR resins. Chemical Engineering Journal, 160, 138–144.

    Article  Google Scholar 

  • Kumar, S. A., Pandey, S. P., Shenoy, N. S., & Kumar, S. D. (2011). Matrix separation and preconcentration of rare earth elements from seawater by poly hydroxamic acid cartridge followed by determination using ICP-MS. Desalination, 281, 49–54.

    Article  CAS  Google Scholar 

  • Li, D., Chang, X., Hua, Z., Wang, Q., Li, R., & Chai, X. (2011). Samarium(III) adsorption on bentonite modified with N-(2-hydroxyethyl) ethylenediamine. Talanta, 83, 1742–1747.

    Article  CAS  Google Scholar 

  • Liang, P., Cao, J., Liu, R., & Liu, Y. (2007). Determination of trace rare earth elements by inductively coupled plasma optical emission spectrometry after preconcentration with immobilized nanometer titanium dioxide. Microchimica Acta, 159, 35–40.

    Article  CAS  Google Scholar 

  • Maheswari, M. A., & Subramanian, M. S. (2005). New multidentate ion-selective grafted polymer for preconcentration of lanthanides and actinides. Analytical Letters, 38, 1331–1349.

    Article  CAS  Google Scholar 

  • Mallah, M. H., Shemirani, F., & Maragheh, M. G. (2009). Ionic liquids for simultaneous preconcentration of some lanthanoids using dispersive liquid-liquid microextraction technique in uranium dioxide powder. Environmental Science and Technology, 43, 1947–1951.

    Article  CAS  Google Scholar 

  • Minowa, H., Takeda, M., & Ebihara, M. (2007). Sequential determination of ultra-trace highly siderophile elements and rare earth elements by radiochemical neutron activation analysis: application to pallasite meteorite. Journal of Radioanalytical and Nuclear Chemistry, 272, 321–325.

    Article  CAS  Google Scholar 

  • Pasinli, T., Eroglu, A. E., & Shahwan, T. (2005). Preconcentration and atomic spectrometric determination of rare earth elements (REEs) in natural water samples by inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 547, 42–49.

    Article  CAS  Google Scholar 

  • Rimskaya-Korsakova, M. N., Dubinin, M. A. V., & Ivanov, V. M. (2003). Determination of rare-earth elements in sulfide minerals by inductively coupled plasma mass spectrometry with ion-exchange preconcentration. Journal of Analytical Chemistry, 58, 870–874.

    Article  CAS  Google Scholar 

  • Sabarudin, A., Lenghor, N., Oshima, M., Hakim, L., Takayanagi, T., Gao, Y. H., & Motomizu, S. (2007). Sequential-injection on-line preconcentration using chitosan resin functionalized with 2-amino-5-hydroxy benzoic acid for the determination of trace elements in environmental water samples by inductively coupled plasma-atomic emission spectrometry. Talanta, 72, 1609–1617.

  • Sereshti, H., Far, A. R., & Samadi, S. (2012). Optimized ultrasound-assisted emulsification-microextraction followed by ICP-OES for simultaneous determination of lanthanum and cerium in urine and water samples. Analytical Letters, 45, 1426–1439.

    Article  CAS  Google Scholar 

  • Sereshti, H., Kermani, M., Karimi, M., & Samadi, S. (2014). Optimized ultrasound-assisted emulsification-microextraction followed by ICP-OES for simultaneous determination of ytterbium and holmium in natural water. Clean–Soil, Air, Water, 42, 1089–1097.

    Article  CAS  Google Scholar 

  • Shariati, S., Yamini, Y., Faraji, M., & Saleh, A. (2009). On-line solid phase extraction coupled to ICP-OES for simultaneous preconcentration and determination of some transition elements. Microchimica Acta, 165, 65–72.

    Article  CAS  Google Scholar 

  • Su, S., Chen, B., He, M., Hu, B., & Xiao, Z. (2014). Determination of trace/ultra trace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline–graphene oxide composite. Talanta, 119, 458–466.

    Article  CAS  Google Scholar 

  • Tajabadi, F., Yamini, Y., & Sovizi, M. R. (2013). Carbon-based magnetic nanocomposites in solid phase dispersion for the preconcentration some of lanthanides, followed by their quantitation via ICP-OES. Microchimica Acta, 180, 65–73.

    Article  CAS  Google Scholar 

  • Tong, S., Zhao, S., Zhou, W., Li, R., & Jia, Q. (2011). Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions. Microchimica Acta, 174, 257–264.

    Article  CAS  Google Scholar 

  • Wang, Z. H., Yan, X. P., Wang, Z. P., Zhang, Z. P., & Liu, L. W. (2006). Flow injection on-line solid phase extraction coupled with inductively coupled plasma mass spectrometry for determination of (ultra) trace rare earth elements in environmental materials using maleic acid grafted polytetrafluoroethylene fibers as sorbent. Journal of the American Society for Mass Spectrometry, 17, 1258–1264.

    Article  CAS  Google Scholar 

  • Wang, Q., Chang, X., Hu, Z., Li, D., Li, R., & Chai, X. (2011). Preconcentration of erbium(III) ions from environmental samples using activated carbon modified with benzoyl hydrazine. Microchimica Acta, 172, 395–402.

    Article  CAS  Google Scholar 

  • Waqar, F., Jan, S., Mohammad, B., Hakim, M., Alam, S., & Yawar, W. (2009). Preconcentration of rare earth elements in seawater with chelating resin having fluorinated-diketone immobilized on styrene divinyl benzene for their determination by ICP-OES. Journal of the Chinese Chemical Society, 56, 335–340.

    CAS  Google Scholar 

  • Xu, Z., Liu, C., Zhang, H., Ma, Y., & Lin, S. (2003). Determination of rare earth elements in geological samples by inductively coupled plasma atomic emission spectrometry with flow injection liquid-liquid extraction. Analytical Sciences, 19, 1625–1629.

    Article  CAS  Google Scholar 

  • Zereen, F., Yilmaz, V., & Arslan, Z. (2013). Solid phase extraction of rare earth elements in seawater and estuarine water with 4-(2-thiazolylazo) resorcinol immobilized Chromosorb 106 for determination by inductively coupled plasma mass spectrometry. Microchemical Journal, 110, 178–184.

    Article  CAS  Google Scholar 

  • Zhang, J., Cheng, R., Tong, S., Gu, X., Quan, X., Liu, Y., Jia, Q., & Jia, J. (2011). Microwave plasma torch-atomic emission spectrometry for the on-line determination of rare earth elements based on flow injection preconcentration by TiO2–graphene composite. Talanta, 86, 114–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support from the Unit of the Scientific Research Projects of Balιkesir University (Project No: 2014/51). They also thank Balιkesir University Research Center of Applied Sciences for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cennet Karadaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadaş, C., Kara, D. Determination of Rare Earth Elements by Solid Phase Extraction Using Chemically Modified Amberlite XAD-4 Resin and Inductively Coupled Plasma-Optical Emission Spectrometry. Water Air Soil Pollut 225, 2192 (2014). https://doi.org/10.1007/s11270-014-2192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2192-6

Keywords

Navigation