Skip to main content
Log in

Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have prepared an environmental friendly sorbent by modifying multi-walled carbon nanotubes with tannic acid. The adsorption of La (III), Tb (III) and Lu (III) as a function of contact time, initial solution pH, and quantity of adsorbent was studied using a batch technique. Both Langmuir and Freundlich isotherms can be used to describe the process. The major adsorption mechanisms were attributed to ion exchange and surface complexation. The kinetics of the adsorption follows a pseudo-second-order model. The thermodynamic functions ΔH, ΔG, and ΔS indicate that the sorption is endothermically driven. The adsorbed ions can be readily desorbed from the surface with 1 M hydrochloric acid.

An environmental friendly sorbent, multi-walled carbon nanotubes modified with tannic acid has been prepared and used for the adsorption of REEs. Adsorption capacity, Langmuir and Freundlich adsorption isotherms, kinetics, and thermodynamic functions have been investigated. The major adsorption mechanism can be attributed to ion exchange and surface complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Y, Hu B (2010) Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples. J Hazard Mater 174:534

    Article  CAS  Google Scholar 

  2. Fujimori F, Hayashi T, Inagaki K, Haraguchi H (1999) Determination of lanthanum and rare earth elements in bovine whole blood reference material by ICP-MS after coprecipitation preconcentration with hemeiron as coprecipitant. Fresenius J Anal Chem 363:277

    Article  CAS  Google Scholar 

  3. Tong SS, Song NZ, Jia Q, Zhou WH, Liao WP (2009) Solvent extraction of rare earths from chloride medium with mixtures of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 and sec-octylphenoxyacetic acid. Sep Purif Technol 69:97

    Article  CAS  Google Scholar 

  4. Sun XQ, Peng B, Ji Y, Chen J, Li DQ (2008) The solid-liquid extraction of yttrium from rare earths by solvent (ionic liquid) impreganated resin coupled with complexing method. Sep Purif Technol 63:61

    Article  CAS  Google Scholar 

  5. Jia Q, Kong XF, Zhou WH, Bi LH (2008) Flow injection on-line preconcentration with an ion-exchange resin coupled with microwave plasma torch-atomic emission spectrometry for the determination of trace rare earth elements. Microchem J 89:82

    Article  CAS  Google Scholar 

  6. Rauf MA, Hussain MT, Hasany SM (1993) Adsorption of europium on manganese dioxide from binary mixtures of aqueous sulfuric acid and methanol. Sep Sci Technol 28:2237

    Article  Google Scholar 

  7. Hang YP, Qin YC, Jiang ZC, Hu B (2003) Direct analysis of trace rare earth elements through nanometer-size titanium dioxide separation/concentration and fluorination assisted ETV-ICP-AES with slurry sampling. Chem J Chin Univ 24:1980

    CAS  Google Scholar 

  8. Quan GR, Yang LH, Pu XL, Hu B, Jiang ZC, Peng TY (2004) Study on adsorption behaviors of rare earth ions on nanometer Al2O3 powder by ICP-AES. J Anal Sci 20:337

    CAS  Google Scholar 

  9. Liang P, Cao J, Liu R, Liu Y (2007) Determination of trace rare earth elements by inductively coupled plasma optical emission spectrometry after preconcentration with immobilized nanometer titanium dioxide. Microchim Acta 159:35

    Article  CAS  Google Scholar 

  10. Pasinli T, Eroglu AE, Shahwan T (2005) Preconcentration and atomic spectrometric determination of rare earth elements (REEs) in natural water samples by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 547:42

    Article  CAS  Google Scholar 

  11. Naik PW, Dhami PS, Misra SK, Jambunathan U, Mathur JN (2003) Use of organophosphorus extractants impregnated on silica gel for the extraction chromatographic separation of minor actinides from high level waste solutions. J Radioanal Nucl Chem 257:327

    Article  CAS  Google Scholar 

  12. Bou-Maroun E, Goetz-Grandmont GJ, Boos A (2007) Solid-liquid extraction of Lanthanum(III), europium(III), and lutetium(III) by acyl-hydroxypyrazoles entrapped in mesostructured silica. Sep Sci Technol 42:1913

    Article  CAS  Google Scholar 

  13. Chowdhury P, Pandit SK, Mandal B (2008) Solid phase extraction of cerium(IV) with crosslinked poly(acrylic acid) coated on silica gel. Indian J Chem 47A:1528

    CAS  Google Scholar 

  14. Zhang AY, Wei YZ, Kumagai MK (2007) Separation of minor actinides and rare earths from a simulated high activity liquid waste by two macroporous silica-based polymeric composites. Sep Sci Technol 42:2235

    Article  CAS  Google Scholar 

  15. Liang P, Fa WJ (2005) Determination of La, Eu and Yb in water samples by inductively coupled plasma atomic emission spectrometry after solid phase extraction of their 1-phenyl-3-methyl-4-benzoylpyrazol-5-one complexes on silica gel column. Microchim Acta 150:15

    Article  CAS  Google Scholar 

  16. Gad HMH, Awwad NS (2007) Factors affecting on the sorption/desorption of Eu(III) using activated carbon. Sep Sci Technol 42:3657

    Article  CAS  Google Scholar 

  17. Lee GS, Uchikoshi M, Mimura K, Isshiki M (2009) Distribution coefficients of La, Ce, Pr, Nd, and Sm on Cyanex 923-, D2EHPA-, and PC88A-impregnated resins. Sep Purif Technol 67:79

    Article  CAS  Google Scholar 

  18. Kim JS, Han C, Wee JH (2006) Effect of polyvinyl alcohol on rare earths (Gd and Tb) separation by extraction resin. Talanta 68:963

    Article  CAS  Google Scholar 

  19. Ansari SA, Pathak PN, Husain M, Prasad AK, Parmar VS, Manchanda VK (2006) Extraction chromatographic studies of metal ions using N, N, N', N'-tetraoctyl diglycolamide as the stationary phase. Talanta 68:1273

    Article  CAS  Google Scholar 

  20. Jain VK, Handa A, Sait SS, Shrivastav P, Agrawal YK (2001) Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillinsemicarbazone. Anal Chim Acta 429:237

    Article  CAS  Google Scholar 

  21. Jelinek L, Wei YZ, Arai T, Kumagai M (2007) Selective Eu(III) electro-reduction and subsequent separation of Eu(II) from rare earths(III) via HDEHP impregnated resin. Solvent Extr Ion Exch 25:503

    Article  CAS  Google Scholar 

  22. Draye M, Czerwinski KR, Favre-Reguillon A, Foos J, Guy A, Lemaire M (2000) Selective separation of lanthanides with phenolic resins: extraction behavior and thermal stability. Sep Sci Technol 35:1117

    Article  CAS  Google Scholar 

  23. Choi KS, Lee CH, Kim JG, Kim WH, Kang JG (2007) Separating Ag, B, Cd, Dy, Eu, and Sm in a Gd matrix using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester extraction chromatography for ICP-AES analysis. Talanta 71:662

    Article  CAS  Google Scholar 

  24. Dave SR, Kaur H, Menon SK (2010) Selective solid-phase extraction of rare earth elements by the chemically modified Amberlite XAD-4 resin with azacrown ether. React Funct Polym 70:692

    Article  CAS  Google Scholar 

  25. Diniz V, Volesky B (2005) Biosorption of La, Eu and Yb using Sargassum biomass. Wat Res 39:239

    Article  CAS  Google Scholar 

  26. Li JP, Song LM, Zhang SJ (2002) Rare earth metal ion adsorption capacity on cross-linked magnet chitosan. J Rare Earth 20:219

    CAS  Google Scholar 

  27. Shan XQ, Lian J, Wen B (2002) Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere 47:701

    Article  CAS  Google Scholar 

  28. Wu DB, Zhao J, Zhang L, Wu QS, Yang YH (2010) Lanthanum adsorption using iron oxide loaded calcium alginate beads. Hydrometallurgy 101:76

    Article  CAS  Google Scholar 

  29. Zhang L, Ding SD, Yang T, Zheng GC (2009) Adsorption behavior of rare earth elements using polyethyleneglycol (phosphomolybdate and tungstate) heteropolyacid sorbents in nitric solution. Hydrometallurgy 99:109

    Article  CAS  Google Scholar 

  30. Fan QH, Shao DD, Hu J, Chen CL, Wu WS, Wang XK (2009) Adsorption of humic acid and Eu(III) to multi-walled carbon nanotubes: effect of pH, ionic strength and counterion effect. Radiochim Acta 97:141

    Article  CAS  Google Scholar 

  31. Chen SZ, Liu C, Lu DB, Zhu L (2009) Determination of trace rare earth elements by ICP-MS after on-line column preconcentration and separation with single-wall carbon nanotubes. At Spectrosc 30:20

    CAS  Google Scholar 

  32. Tong SS, Shi YF, Song NZ, Liu W, Jia Q, Zhou WH (2010) Adsorption of rare earths with multi-walled carbon nanotubes. Chin J Appl Chem 27:944

    CAS  Google Scholar 

  33. Wan HJ, Zou QL, Yan R, Zhao FQ, Zeng BZ (2007) Electrochemistry and voltammetric determination of tannic acid on a single-wall carbon nanotube-coated glassy carbon electrode. Microchim Acta 159:109

    Article  CAS  Google Scholar 

  34. Lin DH, Liu N, Yang K, Zhu LZ, Xu Y, Xing BS (2009) The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon 47:2875

    Article  CAS  Google Scholar 

  35. Lin DH, Xing BS (2008) Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ Sci Technol 42:5917

    Article  CAS  Google Scholar 

  36. Üçer A, Uyanık A, Aygün ŞF (2006) Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Sep Purif Technol 47:113

    Article  Google Scholar 

  37. Üçer A, Uyanık A, Çay S, Özkan Y (2005) Immobilisation of tannic acid onto activated carbon to improve Fe(III) adsorption. Sep Purif Technol 44:11

    Article  Google Scholar 

  38. Liu Y, Li Y, Yan XP (2008) Preparation, characterization, and application of L-Cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv Funct Mater 18:1536

    Article  CAS  Google Scholar 

  39. Simons WW (1978) The Sadtler handbook of infrared spectra. Sadtler Research Laboraries, Philadelphia

    Google Scholar 

  40. Li YH, Wang SG, Luan ZK, Ding J, Xu CL, Wu DH (2003) Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057

    Article  CAS  Google Scholar 

  41. Qu R, Sun C, Wang M, Ji C, Xu Q, Zhang Y, Wang C, Chen H, Yin P (2009) Adsorption of Au(III) from aqueous solution using cotton fiber/chitosan composite adsorbents. Hydrometallurgy 100:65

    Article  CAS  Google Scholar 

  42. Gupta V, Gupat M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Wat Res 35:1125

    Article  CAS  Google Scholar 

  43. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47

    Article  CAS  Google Scholar 

  44. Ho YS, Mckay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Wat Res 34:735

    Article  CAS  Google Scholar 

  45. Weng CH, Huang CP (2004) Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloids Surf A 247:137

    Google Scholar 

Download references

Acknowledgment

Financial support was provided by Basic Scientific Research Fund of Jilin University (2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Jia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, S., Zhao, S., Zhou, W. et al. Modification of multi-walled carbon nanotubes with tannic acid for the adsorption of La, Tb and Lu ions. Microchim Acta 174, 257–264 (2011). https://doi.org/10.1007/s00604-011-0622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0622-3

Keywords

Navigation