Skip to main content
Log in

Degree of Sulfate Saturation in Forest Soils Affected by Past Heavy Anthropogenic Deposition

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aims of this study were to assess sulfate adsorption in Japanese forest soils and to find and evaluate traces of past heavy anthropogenic sulfur deposition based on the degree of saturation as calculated based on the theoretical adsorption capacity determined by isotherm experiments and the amount of actual adsorbed sulfate. Investigations were conducted at two forest sites, a site in Yokkaichi that is exposed to serious air pollution containing sulfur compounds and a site in Inabu that is unpolluted. The distribution of phosphate-extractable sulfate concentration did not differ between the Yokkaichi site (1.11–13.2 mmol kg−1) and the Inabu site (0.40–11.0 mmol kg−1), and the values were higher than published data for North America and Europe. In contrast, the degree of sulfate saturation in soils of the Yokkaichi site was higher than that in soils of the Inabu site. These results indicate that the degree of sulfate saturation is valuable information for the evaluation of sulfur deposition history. The higher degree of saturation at Yokkaichi site may be due to enhanced sulfate adsorption by soils resulting from substantial past sulfur deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Åkerblom, S., Bishop, K., Björn, E., Lambertsson, L., Eriksson, T., & Nilsson, M. B. (2013). Significant interaction effects from sulfate deposition and climate on sulfur concentrations constitute major controls on methylmercury production in peatlands. Geochimica et Cosmochimica Acta, 102(1), 1–11.

    Article  Google Scholar 

  • Appel, C., Rhue, D., Kabengi, N., & Harris, W. (2013). Calorimetric investigation of the nature of sulfate and phosphate sorption on amorphous aluminum hydroxide. Soil Science, 178(4), 180–188.

    Article  CAS  Google Scholar 

  • Aylmore, L. A. G., Karim, M., & Quirk, J. P. (1967). Adsorption and desorption of sulfate ions by soil constituents. Soil Science, 103(1), 10–15.

    Article  CAS  Google Scholar 

  • Barton, D., Hope, D., Billett, M. F., & Cresser, M. S. (1994). Sulphate adsorption capacity and pH of upland podzolic soils in Scotland: effects of parent material, texture and precipitation chemistry. Applied Geochemistry, 9(2), 127–139.

    Article  CAS  Google Scholar 

  • Cai, M., Johnson, A. M., Schwartz, J. S., Moore, S. E., & Kulp, M. A. (2012). Soil acid-base chemistry of a high-elevation forest watershed in the Great Smoky Mountains National Park: influence of acidic deposition. Water, Air, and Soil Pollution, 223(1), 289–303.

    Article  CAS  Google Scholar 

  • Chao, T. T., Harward, M. E., & Fang, S. C. (1964). Iron or aluminum coatings in relation to sulfate adsorption characteristics of soils. Soil Science Society of America Journal, 28(5), 632–635.

    Article  CAS  Google Scholar 

  • Edwards, P. J. (1998). Sulfur cycling, retention, and mobility in soils: a review. USDA.General Technical Report NE–250.

  • Fumoto, T., Iwama, H., & Banzai, K. (1996). Natively retained sulfate and its effect on the acid buffering capacity of andosols. Applied Geochemistry, 11(1), 145–148.

    Article  CAS  Google Scholar 

  • Fumoto, T., & Sverdrup, H. (2000). Modeling of sulfate adsorption on Andisols for implementation in the SAFE model. Journal of Environmental Quality, 29(4), 1284–1290.

    Article  CAS  Google Scholar 

  • Houle, D., & Carignan, R. (1995). Role of SO4 adsorption and desorption in the long-term S budget of a coniferous catchment on the Canadian Shield. Biogeochemistry, 28(3), 161–182.

    Article  CAS  Google Scholar 

  • Hu, Y. L., Jung, K., Zeng, D. H., & Chang, S. X. (2013). Nitrogen-and sulfur-deposition-altered soil microbial community functions and enzyme activities in a boreal mixed wood forest in western Canada. Canadian Journal of Forest Research, 43(9), 777–784.

    Article  CAS  Google Scholar 

  • Hughes, S., Reynolds, B., Norris, D. A., Brittain, S. A., Dere, A. L., Woods, C., Armstrong, L. K., & Wickham, H. D. (2012). Recovery of sulfate saturated soils in the Plynlimon catchments, mid-Wales following reductions in atmospheric S inputs from the 1980s to 2011. Journal of Environmental Monitoring, 14(6), 1531–1541.

    Article  CAS  Google Scholar 

  • Johnson, D. M., & Mitchell, M. J. (1998). Responses of forest ecosystems to changing sulfur inputs. In D. G. Maynard (Ed.), Sulfur in the environment (pp. 219–262). New York: Marcel Decker Inc.

    Google Scholar 

  • Johnson, J. A., Aherne, J., & Cummins, T. (2013). Contrasting responses of two Sitka spruce forest plots in Ireland to reductions in sulphur emissions: results of 20 years of monitoring. Biogeochemistry, 116(1–3), 15–37.

    Article  CAS  Google Scholar 

  • Kopáček, J., Hejzlar, J., Porcal, P., & Posch, M. (2014). Sulphate leaching from diffuse agricultural and forest sources in a large central European catchment during 1900–2010. Science of the Total Environment, 470, 543–550.

    Article  Google Scholar 

  • Mayer, B., Prietzel, J., & Krouse, H. R. (2001). The influence of sulfur deposition rates on sulfate retention patterns and mechanisms in aerated forest soils. Applied Geochemistry, 16(9), 1003–1019.

    Article  CAS  Google Scholar 

  • Ministry of the Environment Government of Japan (2012). Status of air pollution in Japan. Tokyo: Research Institute of Economy, Trade and Industry.

  • Mitchell, M. J., Burke, M. K., & Shepard, J. P. (1992a). Seasonal and spatial patterns of S, Ca, and N dynamics of a northern hardwood forest ecosystem. Biogeochemistry, 17(3), 165–189.

    Article  CAS  Google Scholar 

  • Mitchell, M. J., David, M. B., & Harrison, R. B. (1992b). Sulphur dynamics of forest ecosystems. In R. W. Howarth, J. W. B. Stewart, & M. V. Ivanov (Eds.), SCOPE48 - sulphur cycling on the continents (pp. 215–254). Chichester: Wiley.

    Google Scholar 

  • Mitchell, M. J., Lovett, G., Bailey, S., Beall, F., Burns, D., Buso, D., et al. (2011). Comparisons of watershed sulfur budgets in southeast Canada and northeast US: new approaches and implications. Biogeochemistry, 103(1–3), 181–207.

    Article  CAS  Google Scholar 

  • Nodvin, S. C., Driscoll, C. T., & Likens, G. E. (1986). The effect of pH on sulfate adsorption by a forest soil. Soil Science, 142(2), 69–75.

    Article  CAS  Google Scholar 

  • Novák, M., Kirchner, J. W., Groscheová, H., Havel, M., Černý, J., Krejčí, R., Buzek, F. (2000). Sulfur isotope dynamics in two central european watersheds affected by high atmospheric deposition of SOx. Geochimica et Cosmochimica Acta 64(3), 367–383.

  • Oulehle, F., Chuman, T., Majer, V., & Hruška, J. (2013). Chemical recovery of acidified Bohemian lakes between 1984 and 2012: the role of acid deposition and bark beetle induced forest disturbance. Biogeochemistry, 116(1–3), 83–101.

    Article  CAS  Google Scholar 

  • Palmer, S. M., Clark, J. M., Chapman, P. J., Van der Heijden, G. M. F., & Bottrell, S. H. (2013). Effects of acid sulphate on DOC release in mineral soils: the influence of SO4 2− retention and Al release. European Journal of Soil Science, 64(4), 537–544.

    Article  CAS  Google Scholar 

  • Prietzel, J., Mayer, B., & Legge, A. H. (2004). Cumulative impact of 40 years of industrial sulfur emissions on a forest soil in west-central Alberta (Canada). Environmental Pollution, 132(1), 129–144.

    Article  CAS  Google Scholar 

  • Rajan, S. S. S. (1979). Adsorption and desorption of sulfate and charge relationships in allophanic clays. Soil Science Society of America Journal, 43(1), 65–69.

    Article  CAS  Google Scholar 

  • R Core Team. (2012). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Robison, A. L., Scanlon, T. M., Cosby, B. J., Webb, J. R., & Galloway, J. N. (2013). Roles of sulfate adsorption and base cation supply in controlling the chemical response of streams of western Virginia to reduced acid deposition. Biogeochemistry, 116(1–3), 119–130.

    Article  CAS  Google Scholar 

  • Smith, S. J., Pitcher, H., & Wigley, T. M. L. (2001). Global and regional anthropogenic sulfur dioxide emissions. Global and Planetary Change, 29(1), 99–119.

    Article  Google Scholar 

  • Stern, D. I. (2005). Global sulfur emissions from 1850 to 2000. Chemosphere, 58(2), 163–175.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Lawrence, G. B., Bailey, S. W., McDonnell, T. C., Beier, C. M., Weathers, K. C., McPherson, G. T., & Bishop, D. A. (2013). Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York. Environmental Science & Technology, 47(22), 12687–12694.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A. (1996). Sulfur. In D. L. Spark (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 921–960). Madison: SSSA.

    Google Scholar 

  • Takahashi, J., & Higashi, T. (2013). Long-term changes in sulfate concentrations and soil acidification of forested Umbrisols and Andosols of Japan. Soil Science, 178(2), 69–78.

    Article  CAS  Google Scholar 

  • Takahashi, J., Higashi, T., & Tamura, K. (2009). Re-examination on the extraction method of sulfate ion in forest soils with calcium dihydrogen phosphate solution. Pedologist, 53(2), 94–99 (In Japanese).

    CAS  Google Scholar 

  • Tanikawa, T., & Takenaka, C. (1999). Relating sulfate adsorption to soil properties in Japanese forest soils. Journal of Forest Research, 4(3), 217–222.

    Article  CAS  Google Scholar 

  • Tanikawa, T., Ishizuka, K., & Imaya, A. (1999). Extractable sulfate content in Japanese forest soils. Journal of Forest Research, 4(2), 191–194.

    Article  CAS  Google Scholar 

  • Tejnecký, V., Bradová, M., Borůvka, L., Němeček, K., Šebek, O., Nikodem, A., Zenáhlíková, J., Rejzek, J., & Drábek, O. (2013). Profile distribution and temporal changes of sulphate and nitrate contents and related soil properties under beech and spruce forests. Science of the Total Environment, 442, 165–171.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. T. Tanikawa (Forestry and Forest Products Research Institute) for invaluable suggestions. We also thank S. Watabe (Mie Prefecture), N. Yamaguchi, and N. Takabe (Nagoya University) for their assistance with our field investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Ishida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, T., Takenaka, C. Degree of Sulfate Saturation in Forest Soils Affected by Past Heavy Anthropogenic Deposition. Water Air Soil Pollut 225, 2061 (2014). https://doi.org/10.1007/s11270-014-2061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2061-3

Keywords

Navigation