Skip to main content
Log in

Efficient Photodecomposition of NOx on Carbon Modified Ag/TiO2 Nanocomposites

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A serial of carbon modified Ag/TiO2 photocatalysts have been synthesized with different carbon content by a simple co-impregnation method. Here, 1-pentanol was used as carbon precursor. The carbon modified Ag/TiO2 nanocomposites were characterized by X-ray diffraction, raman spectroscopy, thermal gravity analysis, UV–vis diffuse reflectance spectra, photoluminescence, and X-ray photoelectron spectroscopy. The photocatalytic removal of nitrogen oxides was carried out under both UV light and visible light irradiation. Our results revealed that carbon and silver species showed strong synergistic effect which significantly enhance the photocatalytic NOx removal on TiO2 photocatalyst under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545. https://doi.org/10.1016/S0950-4230(00)00007-3

    Article  Google Scholar 

  2. Zhang Z, Jiang Z, Shangguan W (2016) Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today 264:270–278. https://doi.org/10.1016/j.cattod.2015.10.040

    Article  CAS  Google Scholar 

  3. Sharma A, Lee B-K (2017) A novel nanocomposite of Ca(OH)2-incorporated zeolite as an additive to reduce atmospheric emissions of PM and VOCs during asphalt production. Environ Sci 4(3):613–624. https://doi.org/10.1039/C6EN00483K

    Article  CAS  Google Scholar 

  4. Sharma A, Lee B-K (2017) Energy savings and reduction of CO2 emission using Ca(OH)2 incorporated zeolite as an additive for warm and hot mix asphalt production. Energy 136:142–150. https://doi.org/10.1016/j.energy.2016.03.085

    Article  CAS  Google Scholar 

  5. Tsang CHA, Li K, Zeng Y, Zhao W, Zhang T, Zhan Y, Xie R, Leung DYC, Huang H (2019) Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast. Environ Int 125:200–228. https://doi.org/10.1016/j.envint.2019.01.015

    Article  CAS  Google Scholar 

  6. Sharma A, Lee B-K (2015) Synthesis and characterization of anionic/nonionic surfactant-interceded iron-doped TiO2 to enhance sorbent/photo-catalytic properties. J Solid State Chem 229:1–9. https://doi.org/10.1016/j.jssc.2015.04.042

    Article  CAS  Google Scholar 

  7. Sharma A, Lee B-K (2016) Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol. J Environ Manag 181:563–573. https://doi.org/10.1016/j.jenvman.2016.07.016

    Article  CAS  Google Scholar 

  8. Lin H-y, Shih C-y (2012) Efficient one-pot microwave-assisted hydrothermal synthesis of nitrogen-doped TiO2 for hydrogen production by photocatalytic water splitting. Catal Surv Asia 16(4):231–239. https://doi.org/10.1007/s10563-012-9146-z

    Article  CAS  Google Scholar 

  9. Fan WG, Chan KY, Zhang CX, Zhang K, Ning Z, Leung MKH (2018) Solar photocatalytic asphalt for removal of vehicular NOx: a feasibility study. Appl Energy 225:535–541. https://doi.org/10.1016/j.apenergy.2018.04.134

    Article  CAS  Google Scholar 

  10. Chen S-H, Hsiao Y-C, Chiu Y-J, Tseng Y-H (2018) A simple route in fabricating carbon-modified titania films with glucose and their visible-light-responsive photocatalytic activity. Catalysts 8(5):178

    Article  Google Scholar 

  11. Chen YQ, Shen C, Wang J, Xiao G, Luo GS (2018) Green synthesis of Ag-TiO2 supported on porous glass with enhanced photocatalytic performance for oxidative desulfurization and removal of dyes under visible light. ACS Sustain Chem Eng 6(10):13276–13286. https://doi.org/10.1021/acssuschemeng.8b02860

    Article  CAS  Google Scholar 

  12. Pham T-D, Lee B-K (2015) Novel integrated approach of adsorption and photo-oxidation using Ag–TiO2/PU for bioaerosol removal under visible light. Chem Eng J 275:357–365. https://doi.org/10.1016/j.cej.2015.04.055

    Article  CAS  Google Scholar 

  13. Pham T-D, Lee B-K (2015) Photocatalytic comparison of Cu- and Ag-doped TiO2/GF for bioaerosol disinfection under visible light. J Solid State Chem 232:256–263. https://doi.org/10.1016/j.jssc.2015.10.011

    Article  CAS  Google Scholar 

  14. Pham T-D, Lee B-K (2014) Effects of Ag doping on the photocatalytic disinfection of E. coli in bioaerosol by Ag–TiO2/GF under visible light. J Colloid Interface Sci 428:24–31. https://doi.org/10.1016/j.jcis.2014.04.030

    Article  CAS  Google Scholar 

  15. Pham T-D, Lee B-K, Pham-Cong D (2016) Advanced removal of toluene in aerosol by adsorption and photocatalytic degradation of silver-doped TiO2/PU under visible light irradiation. RSC Adv 6(30):25346–25358. https://doi.org/10.1039/C5RA23786F

    Article  CAS  Google Scholar 

  16. Sharma A, Lee B-K (2014) Cd(II) removal and recovery enhancement by using acrylamide–titanium nanocomposite as an adsorbent. Appl Surf Sci 313:624–632. https://doi.org/10.1016/j.apsusc.2014.06.034

    Article  CAS  Google Scholar 

  17. Zhang WF, He YL, Zhang MS, Yin Z, Chen Q (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33(8):912–916. https://doi.org/10.1088/0022-3727/33/8/305

    Article  CAS  Google Scholar 

  18. Lin L, Lin W, Zhu YX, Zhao BY, Xie YC, Jia GQ, Li C (2005) Uniformly carbon-covered alumina and its surface characteristics. Langmuir 21(11):5040–5046. https://doi.org/10.1021/la047097d

    Article  CAS  Google Scholar 

  19. Lin W, Cheng H, Ming J, Yu Y, Zhao F (2012) Deactivation of Ni/TiO2 catalyst in the hydrogenation of nitrobenzene in water and improvement in its stability by coating a layer of hydrophobic carbon. J Catal 291:149–154. https://doi.org/10.1016/j.jcat.2012.04.020

    Article  CAS  Google Scholar 

  20. Liang HJ, Jia ZC, Zhang HC, Wang XB, Wang JJ (2017) Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B. Appl Surf Sci 422:1–10. https://doi.org/10.1016/j.apsusc.2017.05.211

    Article  CAS  Google Scholar 

  21. Greczynski G, Hultman L (2017) C 1s peak of adventitious carbon aligns to the vacuum level: dire consequences for material's bonding assignment by photoelectron spectroscopy. ChemPhysChem 18(12):1507–1512. https://doi.org/10.1002/cphc.201700126

    Article  CAS  Google Scholar 

  22. Wu XY, Yin S, Dong Q, Guo CS, Li HH, Kimura T, Sato T (2013) Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl Catal B 142:450–457. https://doi.org/10.1016/j.apcatb.2013.05.052

    Article  CAS  Google Scholar 

  23. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B 69(3):138–144. https://doi.org/10.1016/j.apcatb.2006.06.015

    Article  CAS  Google Scholar 

  24. Pankove JI (1971) Optical processes in semiconductors. Dover Publications, New York

    Google Scholar 

  25. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605. https://doi.org/10.1088/0957-4484/19/14/145605

    Article  CAS  Google Scholar 

  26. Pham T-D, Lee B-K (2017) Novel capture and photocatalytic conversion of CO2 into solar fuels by metals co-doped TiO2 deposited on PU under visible light. Appl Catal A 529:40–48. https://doi.org/10.1016/j.apcata.2016.10.019

    Article  CAS  Google Scholar 

  27. Sharma A, Lee B-K (2017) Growth of TiO2 nano-wall on activated carbon fibers for enhancing the photocatalytic oxidation of benzene in aqueous phase. Catal Today 287:113–121. https://doi.org/10.1016/j.cattod.2016.11.019

    Article  CAS  Google Scholar 

  28. Sharma A, Lee B-K (2016) Structure and activity of TiO2/FeO co-doped carbon spheres for adsorptive-photocatalytic performance of complete toluene removal from aquatic environment. Appl Catal A 523:272–282. https://doi.org/10.1016/j.apcata.2016.06.018

    Article  CAS  Google Scholar 

  29. Shao J, Sheng WC, Wang MS, Li SJ, Chen JR, Zhang Y, Cao SS (2017) In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl Catal B 209:311–319. https://doi.org/10.1016/j.apcatb.2017.03.008

    Article  CAS  Google Scholar 

  30. Ma JZ, Wang CX, He H (2016) Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. Appl Catal B 184:28–34. https://doi.org/10.1016/j.apcatb.2015.11.013

    Article  CAS  Google Scholar 

  31. Papailias I, Todorova N, Giannakopoulou T, Yu JG, Dimotikali D, Trapalis C (2017) Photocatalytic activity of modified g-C3N4/TiO2 nanocomposites for NOx removal. Catal Today 280:37–44. https://doi.org/10.1016/j.cattod.2016.06.032

    Article  CAS  Google Scholar 

  32. Angelo J, Andrade L, Mendes A (2014) Highly active photocatalytic paint for NOx abatement under real-outdoor conditions. Appl Catal A 484:17–25. https://doi.org/10.1016/j.apcata.2014.07.005

    Article  CAS  Google Scholar 

  33. Rodriguez MJH, Melian EP, Diaz OG, Arana J, Macias M, Orive AG, Rodriguez JMD (2016) Comparison of supported TiO2 catalysts in the photocatalytic degradation of NOx. J Mol Catal A 413:56–66. https://doi.org/10.1016/j.molcata.2015.12.007

    Article  CAS  Google Scholar 

  34. Serpone N (2018) Heterogeneous photocatalysis and prospects of TiO2-based photocatalytic DeNOxing the atmospheric environment. Catalysts 8(11):553. https://doi.org/10.3390/catal8110553

    Article  CAS  Google Scholar 

  35. Huy TH, Bui DP, Kang F, Wang Y-F, Liu S-H, Thi CM, You S-J, Chang G-M, Pham VV (2019) SnO2/TiO2 nanotube heterojunction: the first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere 215:323–332. https://doi.org/10.1016/j.chemosphere.2018.10.033

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by National Science Council (Grant No. MOST 106-2221-E-011 -005 -MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Hsuan Tseng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LC., Tseng, YH. & Lin, Hy. Efficient Photodecomposition of NOx on Carbon Modified Ag/TiO2 Nanocomposites. Top Catal 63, 1251–1260 (2020). https://doi.org/10.1007/s11244-020-01255-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01255-6

Keywords

Navigation