Skip to main content
Log in

Advective Transport Through Three-Dimensional Anisotropic Formations of Bimodal Hydraulic Conductivity

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Transport of a non-reactive solute in anisotropic bimodal porous formations is investigated through the evaluation of the breakthrough curve. The hydraulic conductivity \(K\) structure is modelled as an ensemble of anisotropic and non-overlapping inclusions, with given hydraulic conductivity \(K_{i}\), randomly placed in an homogeneous matrix with hydraulic conductivity \(K_{0}\). The conductivity contrast \(\kappa =K_{i}/K_{0}\) between the inclusions and the matrix represents the main source of heterogeneity. The resulting \(K\) structure is a theoretical representation of natural porous formations where inclusions and matrix play the role of two distinct hydrofacies. Semi-analytical solutions for flow and transport are carried out in both 3D and 2D domains following a Lagrangian approach by adopting the dilute limit approximation. The procedure, formally valid for media with low inclusions–matrix relative volume fraction, is extended to dense media by a simplified formulation of the self-consistent approach. Natural porous formations are intrinsically anisotropic due to the depositional process; hence, particular emphasis is addressed to the quantification of the effects of the anisotropy on solute transport. The solution of our physically based model depends on three structural parameters: the hydraulic conductivity contrast \(\kappa \), the relative volume fraction \(n\), and the statistical anisotropy ratio \(e\). The procedure allows for the physical representation of high-velocity channels and stagnation zones, which can be encountered in bimodal media, and it is particular advantageous for a quick estimation of the solute breakthrough curve. Our analysis shows different transport dynamics, as function of the conductivity contrast \(\kappa =K_{i}/K_{0}\), leading to fast preferential flow (\(\kappa >1\)) or mass retention (\(\kappa <1\)), as a consequence of the lack of symmetry of the flow and transport parameters (velocity and travel time residuals). High dispersion is typically found when \(\kappa <1\), i.e. for low conductive inclusions, where the latter typically trap the solute particles, determining large travel times. Conversely, when \(\kappa >1\) flow in the inclusions is constrained by the outer flow, limiting the solute velocity inside the inclusions, which results is a rather limited dispersion. Anisotropy typically enhances the solute spreading for \(\kappa <1,\) as a consequence of the slower velocity predicted for more anisotropic inclusions, while its impact on formations with high \(\kappa \) is rather limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berglund, S., Fiori, A.: Influence of transverse mixing on the breakthrough of sorbing solute in a heterogeneous aquifer. Water Resour. Res. 33(3), 399–405 (1997). doi:10.1029/96WR03686

    Article  Google Scholar 

  • Boggs, J.M., Young, S.C., Beard, L.M., Gelhar, L.W., Rehfeldt, K.R., Adams, E.E.: Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description. Water Resour. Res. 28(12), 3281–3291 (1992). doi:10.1029/92WR01756

    Article  Google Scholar 

  • Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, Oxford (1959)

    Google Scholar 

  • Coppola, A., Comegna, V., Basile, A., Lamaddalena, N., Severino, G.: Darcian preferential water flow and solute transport through bimodal porous systems: experiments and modelling. J. Contam. Hydrol. 104, 1–4 (2009). doi:10.1016/j.jconhyd.2008.10.004

    Article  Google Scholar 

  • Dagan, G.: Models of groundwater flow in statistically homogeneous porous formations. Water Resour. Res. 15(1), 47–63 (1979). doi:10.1029/WR015i001p00047

    Article  Google Scholar 

  • Dagan, G.: Flow and Transport in Porous Formations. Springer, New York (1989)

    Book  Google Scholar 

  • Dagan, G., Lessoff, S.C.: Solute transport in heterogeneous formations of bimodal conductivity distribution: 1. Theory. Water Resour. Res. 37(3), 465–472 (2001). doi:10.1029/2000WR900225

    Article  Google Scholar 

  • Dagan, G., Fiori, A.: Time-dependent transport in heterogeneous formations of bimodal structures: 1. The model. Water Resour. Res. 39(5), 1112 (2003). doi:10.1029/2002WR001396

    Google Scholar 

  • Dagan, G., Fiori, A., Janković, I.: Flow and transport in highly heterogeneous formations: 1. Conceptual framework and validity of first-order approximations. Water Resour. Res. 39(9), 1268 (2003). doi:10.1029/2002WR001717

    Google Scholar 

  • Desbarats, A.J.: Macrodispersion in sand–shale sequences. Water Resour. Res. 26, 1 (2010). doi:10.1029/WR026i001p00153

    Google Scholar 

  • Eames, I., Bush, J.W.: Longitudinal dispersion by bodies fixed in a potential flow. Proc. R. Soc. Lond. Ser. A 455, 3665–3686 (1999). doi:10.1098/rspa.1999.0471

    Article  Google Scholar 

  • Fiori, A., Dagan, G.: Time-dependent transport in heterogeneous formations of bimodal structures: 2. Results. Water Resour. Res. 39(5), 1125 (2003). doi:10.1029/2002WR001398

    Google Scholar 

  • Fiori, A., Janković, I., Dagan, G.: Flow and transport in highly heterogeneous formations: 2. Semianalytical results for isotropic media. Water Resour. Res. 39(9), 1269 (2003). doi:10.1029/2002WR001719

    Google Scholar 

  • Fiori, A., Janković, I., Dagan, G.: Modeling flow and transport in highly heterogeneous three-dimensional aquifers: Ergodicity, Gaussianity, and anomalous behavior—2. Approximate semianalytical solution. Water Resour. Res. 42, W06D13 (2006). doi:10.1029/2005WR004752

    Google Scholar 

  • Fiori, A., Janković, I., Dagan, G., Cvetković, V.: Ergodic transport through aquifers of non-Gaussian log conductivity distribution and occurrence of anomalous behavior. Water Resour. Res. 43, W09407 (2007). doi:10.1029/2007WR005976

    Google Scholar 

  • Fiori, A., Janković, I., Dagan, G.: The impact of local diffusion upon mass arrival of a passive solute in transport through three-dimensional highly heterogeneous aquifers. Adv. Water Resour. 34, 1563–1573 (2011). doi:10.1016/j.advwatres.08.010

    Article  Google Scholar 

  • Fiori, A., Janković, I.: On preferential flow, channeling and connectivity in heterogeneous porous formations. Math. Geosci. 44(2), 133–145 (2011). doi:10.1007/s11004-011-9365-2

    Article  Google Scholar 

  • Fiori, A., Dagan, G., Janković, I., Zarlenga, A.: The plume spreading in the MADE transport experiment: could it be predicted by stochastic models? Water Resour. Res. 49, 2497–2507 (2013). doi:10.1002/wrcr.20128

    Article  Google Scholar 

  • Gomez-Hernãndez, J.J., Wen, X.H.: To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv. Water Resour. 21, 1 (1998). doi:10.1016/S0309-1708(96)00031-0

    Article  Google Scholar 

  • Janković, I., Fiori A.: Analysis of the impact of injection mode in transport through strongly heterogeneous aquifers. Adv. Water Resour. 33, 1199–1205 (2010). doi:10.1016/j.advwatres.2010.05.006

  • Janković, I., Fiori, A., Dagan, G.: Flow and transport in highly heterogeneous formations: 3. Numerical simulations and comparison with theoretical results. Water Resour. Res. 39(9), 1270 (2003). doi:10.1029/2002WR001721

    Google Scholar 

  • Janković, I., Fiori, A., Dagan, G.: Effective conductivity of a heterogeneous medium of lognormal conductivity distribution. Multiscale Model. Simul. 1(1), 40–56 (2003)

    Article  Google Scholar 

  • Janković, I., Fiori, A., Dagan, G.: Modeling flow and transport in highly heterogeneous three-dimensional aquifers: ergodicity, gaussianity, and anomalous behavior–1. Conceptual issues and numerical simulations. Water Resour. Res. 42, W06D12 (2006). doi:10.1029/2005WR004734

    Google Scholar 

  • Janković, I., Fiori, A., Dagan, G.: The impact of local diffusion on longitudinal macrodispersivity and its major effect upon anomalous transport in highly heterogeneous aquifers. Adv. Water Resour. 32(5), 659–669 (2009). doi:10.1016/j.advwatres.2008.08.012

    Article  Google Scholar 

  • Lessoff, S.C., Dagan, G.: Solute transport in heterogeneous formations of bimodal conductivity distribution: 2. Applications. Water Resour. Res. 37(3), 473–480 (2001). doi:10.1029/2000WR900226

    Article  Google Scholar 

  • Lu, Z., Zhang, D.: On stochastic modeling of flow in multimodal heterogeneous formations. Water Resour. Res. 38(10), 1190 (2002). doi:10.1029/2001WR001026

    Google Scholar 

  • Massabó, M., Bellin, A., Valocchi, A.J.: Spatial moments analysis of kinetically sorbing solutes in aquifer with bimodal permeability distribution. Water Resour. Res. 44, W09424 (2008). doi:10.1029/2007WR006539

  • Pozdniakov, S., Tsang, C.-F.: A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium. Water Resour. Res. 40, W05105 (2004). doi:10.1029/2003WR002617

    Google Scholar 

  • Ritzi Jr, R.W.: Behavior of indicator variograms and transition probabilities in relation to the variance in lengths of hydrofacies. Water Resour. Res. 36(11), 3375–3381 (2000). doi:10.1029/2000WR900139

    Article  Google Scholar 

  • Romano, N., Nasta, P., Severino, G., Hopmans, J.W.: Using bimodal lognormal functions to describe soil hydraulic properties. Soil Sci. Soc. Am. J. 75, 2 (2011). doi:10.2136/sssaj2010.0084

    Article  Google Scholar 

  • Rubin, Y.: Flow and transport in bimodal heterogeneous formations. Water Resour. Res. 31(10), 2461–2468 (1995). doi:10.1029/95WR01953

    Article  Google Scholar 

  • Rubin, Y.: Applied Stochastic Hydrology. Oxford University Press, New York (2003)

    Google Scholar 

  • Russo, D.: Numerical analysis of solute transport in variably saturated bimodal heterogeneous formations with mobile–immobile-porosity. Adv. Water Resour. 47, 31–42 (2012). doi:10.1016/j.advwatres.2012.05.017

    Article  Google Scholar 

  • Russo, D.: First-order and numerical analyses of flow and transport in heterogeneous bimodal variably saturated formations. Water Resour. Res. 46, 6 (2010). doi:10.1029/2009WR008307

    Google Scholar 

  • Russo, D.: On probability distribution of hydraulic conductivity in variably saturated bimodal heterogeneous formations. Vadose Zone J. 8, 3 (2009). doi:10.2136/vzj2008.0114

    Article  Google Scholar 

  • Russo, D.: Stochastic analysis of macrodispersion in heterogeneous bimodal variably saturated formations: the effect of water saturation. Water Resour. Res. 40, W09201 (2004). doi:10.1029/2004WR003045

    Google Scholar 

  • Suribhatla, R., Janković, I., Fiori, A., Zarlenga, A., Dagan, G.: Effective conductivity of an anisotropic heterogeneous medium of random conductivity distribution. Multiscale Model. Simul. 9(3), 933–954 (2011). doi:10.1137/100805662

    Article  Google Scholar 

  • Zarlenga, A., Fiori, A., Soffia, C., Janković, I.: Flow velocity statistics for uniform flow through 3D anisotropic formations. Adv. Water Resour. 40, 37–45 (2012). doi:10.1016/j.advwatres.2012.01.011

  • Zarlenga, A., Janković, I., Fiori, A.: Advective transport in heterogeneous formations: the impact of spatial anisotropy on the breakthrough curve. Transp. Porous Media 96, 2 (2013). doi:10.1007/s11242-012-0088-8

    Google Scholar 

Download references

Acknowledgments

This work was developed with the support of Ministero dell’Istruzione dell’Universita’ e della Ricerca (MIUR) through the Project No. 2010JHF437 PRIN 2011 Innovative methods for water resources management under hydro-climatic uncertainty scenarios.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Zarlenga.

Appendices

Appendix 1: Potential and Velocity for an Oblate Spheroidal Inclusion

In this section, we reproduce the analytical solution of the flow potential through an unbounded domain made by one oblate spheroid \(\omega \) with hydraulic conductivity \(K\) embedded in a homogeneous matrix with hydraulic conductivity \(K=K_{0}\); for a more detailed discussion, the reader can refer to Carslaw and Jaeger (1959). The spheroid is aligned with the mean flow direction \(\mathbf {U}\); the Cartesian reference systems \((x,y,z)\) are placed in the inclusion centroid \(\mathbf {x}=0\) with the \(x\) axis is parallel with \(\mathbf {U}\) so that the spheroid semi-axes are \((R,R,eR)\). The flow problem is governed by the following equations

$$\begin{aligned} \phi _{j}(\mathbf {x})&= -KH_{j};\quad \nabla ^{2}\phi _{j}(\mathbf {x})=0 \end{aligned}$$
(22)
$$\begin{aligned} \nabla \phi _{j}&= \mathbf {U};\quad |x|=\pm L/2 \\ \frac{\phi _{j}^{\mathrm{ex}}}{K_{0}}&= \frac{\phi _{j}^{\mathrm{in}}}{K_{i}};\quad \frac{\partial \phi _{j}^{\mathrm{ex}}}{\partial \nu }=\frac{\partial \phi _{j}^{\mathrm{in}}}{\partial \nu };\quad x\in \partial \omega _{i} \nonumber \end{aligned}$$
(23)

The flow potential can be written as the sum of the mean flow potential \(Ux\) and the disturbance induced by the inclusion \(\varphi \)

$$\begin{aligned} \phi (\mathbf {x})=Ux+\varphi (\mathbf {x}) \end{aligned}$$
(24)

The analytical expression for \(\varphi \) is split into two terms: \(\varphi ^{(\mathrm in)}\) for \(\mathbf {x}\in \omega \) and \(\varphi ^{(\mathrm{ex})}\) for \(\mathbf {x} \notin \omega \). Superscripts in and ex indicate zones inside and outside the inclusion.

$$\begin{aligned} \frac{\varphi ^{\left( \mathrm{in}\right) }}{\hbox {UR}}&= -\frac{(\kappa -1)F_{0}\left( e\right) }{1+\left( \kappa -1\right) F_{0}\left( e\right) }\frac{r_{x}}{R} \quad \text { }\,\left( \mathbf {r\in }\omega \right) \\ \frac{\varphi ^{\left( \mathrm{ex}\right) }}{\hbox {UR}}&= -\frac{(\kappa -1)}{1+\left( \kappa -1\right) F_{0}\left( e\right) }F_{\lambda }\left( e,\mathbf {r} \right) \frac{r_{x}}{R}\;\ \;\;\left( \mathbf {r}\notin \omega \right) \; \nonumber \end{aligned}$$
(25)

where

$$\begin{aligned} F_{\lambda }&= \frac{\sqrt{1-e^{2}}}{2e^{3}}\left( \cot ^{-1}\zeta \left( \mathbf {r}\right) -\frac{\zeta \left( \mathbf {r}\right) }{\zeta ^{2}\left( \mathbf {r}\right) +1}\right) ;\quad F_{0}=\frac{\sqrt{1-e^{2}}}{2e^{3}} \left( \cot ^{-1}\zeta _{0}-\frac{\zeta _{0}}{\zeta _{0}^{2}+1}\right) \nonumber \\ \zeta \left( \mathbf {r}\right)&= \sqrt{\frac{\left( Re\right) ^{2}+\lambda \left( \mathbf {x}\right) }{R^{2}\left( 1-e^{2}\right) }};\quad \zeta _{0}=\frac{e}{\sqrt{1-e^{2}}} \end{aligned}$$
(26)

with \(\mathbf {r}=\mathbf {x-0}\), \(r=\left| \mathbf {r}\right| \), \(\kappa =K_{i}/K_{0}\) and

$$\begin{aligned} \lambda \left( \!\mathbf {r}\right) =2^{-1}\left( -R^{2}\left( 1\!+e^{2}\right) +r^{2}\!+\sqrt{R^{2}\left( e^{2}-1\right) \left[ \left( e^{2}-1\right) R^{2}+2\left( r_{x}^{2}+r_{y}^{2}-r_{z}^{2}\right) \right] +r^{4}}\right) \end{aligned}$$
(27)

Closed-form expressions for the velocity \(V_{x}\) along the streamline \(\mathbf {X_{t}}=(x,0,0)\) can be obtained through derivation of Eq. (25). Velocity disturbances \(u^{\mathrm{in}};u^{\mathrm{ex}}\), which are not null only in the longitudinal direction, are given in the following expressions with the aid of the dimensionless variable \(x_{1}=x/R;\kappa =K_{i}/K_{0}\)

$$\begin{aligned}&\frac{u_{x}^{\mathrm{in}}}{U} =\frac{2\left( e^{2}-1\right) ^{2}\kappa }{\left( e^{2}-1\right) \left( e^{2}(\kappa +1)-2\right) +e\sqrt{1-e^{2}}(\kappa -1)\cot ^{-1}\left( \frac{e}{\sqrt{1-e^{2}}}\right) } \nonumber \\&\frac{u_{x}^{\mathrm{ex}}(x_{1},0,0)}{U}\\&\quad =\frac{e\left( e^{2}-1\right) (\kappa -1)\left( x_{1}^{2}\sqrt{-\frac{e^{2}+x_{1}^{2}-1}{e^{2}-1}}\cot ^{-1}\left( \sqrt{\frac{e^{2}+x_{1}^{2}-1}{1-e^{2}}}\right) +e^{2}-x_{1}^{2}-1\right) }{x_{1}^{2}\sqrt{e^{2}+x_{1}^{2}-1}\left( \left( e^{2}-1\right) \left( e^{2}(\kappa +1)-2\right) +e\sqrt{1-e^{2}}(\kappa -1)\cot ^{-1}\left( \frac{e}{\sqrt{1-e^{2}}}\right) \right) }\nonumber \end{aligned}$$
(28)

Appendix 2: Potential and Velocity for an Elliptical Inclusion

In this section, we provide the solution of the flow through an elliptical inclusion; a more comprehensive study can be found in Dagan and Lessoff (2001). The ellipse \(\omega \) is placed in a unbounded domain, the hydraulic conductivity ratio is \(\kappa =K_{i}/K_{0}\) with \(K_{i}\) and \(K_{0}\) pertaining, respectively, to the inclusion and to the matrix; the velocity \(\mathbf {U}\) applied on the boundary is aligned with the ellipse major axis. The Cartesian coordinate system is placed on the ellipse centroid so that its semi-axes are \((R;eR)\). Because of the approximation in Eq. 12, we are interested only in the flow potential \(\phi \) and in the longitudinal velocity \(V_{x}=\partial \phi /\partial x\) along the particular streamline \(\mathbf {X}=0\). In the following equations, two terms indicated with the superscript in and ex represent the longitudinal velocity \(V_{x}\) in the domain exterior and interior to the inclusion

$$\begin{aligned} \frac{V_{x}^{\mathrm{in}}}{U}&= \frac{(e+1)\kappa \sqrt{e^{2}\left( \kappa ^{2}+1\right) -\left( e^{2}-1\right) \left( \kappa ^{2}-1\right) +4e\kappa +\kappa ^{2}+1}}{\sqrt{2}(e+\kappa )(e\kappa +1)} \\ \frac{V_{x}^{\mathrm{ex}}(x,0,0)}{U}&= \frac{1}{2}\left( \frac{x_{1}}{\sqrt{e^{2}+x_{1}^{2}-1}}+1\right) \left( \frac{\left( e^{2}+1\right) (e\kappa -1) }{(e\kappa +1)\left( \sqrt{e^{2}+x_{1}^{2}-1}+x_{1}\right) ^{2}}+1\right) \nonumber \end{aligned}$$
(29)

with \(x_{1}=x/R\). The flow potential is given by

$$\begin{aligned}&\displaystyle \frac{\phi ^{\mathrm{in}}(x,0,0)}{\hbox {UR}} =V_{x}x \end{aligned}$$
(30)
$$\begin{aligned}&\displaystyle \frac{\phi ^{\mathrm{ex}}(x,0,0)}{\hbox {UR}} =\frac{\left( \sqrt{\left( e^{2}-1\right) R^{2}+x^{2}}+x\right) ^{2}+4\mu }{2\left( \sqrt{\left( e^{2}-1\right) R^{2}+x^{2}}+x\right) } \end{aligned}$$
(31)

with

$$\begin{aligned} \mu =\pm \frac{\left( e^{2}+1\right) R^{2}\sqrt{\left( e^{2}k+e\left( k^{2}-1\right) -k\right) ^{2}}}{4(e+k)(ek+1)} \end{aligned}$$
(32)

where the positive and negative signs hold, respectively, for \(\kappa <1\) and \(\kappa >1\).

Appendix 3: Effective Hydraulic Conductivity

In this section, we summarize the results in terms of effective hydraulic conductivity \(\mathbf {K}_\mathrm{ef}\) obtained through the application of the self-consistent approach (SCA). The procedure was introduced in the study of porous formations by Dagan (1979); it was thoroughly described and tested in both isotropic and anisotropic domains (e.g. Janković et al. 2003b; Suribhatla et al. 2011). The SCA is recognized to be more suitable for the study of bimodal formation (Pozdniakov and Tsang 2004); moreover, in this particular media, the discontinuity of hydraulic conductivity could leave theoretical issues on the application of alternatives models.

For 2D domains, the \(\mathbf {K}_\mathrm{ef}\) tensor can be obtained by solving the following systems.

$$\begin{aligned} \left\{ \begin{aligned} \left( e_0 \sqrt{\frac{K_{\mathrm{ef},h}}{K_{\mathrm{ef},v}}}+1 \right) \left[ FV_X (K_0) (1-n)+ FV_X (K_i) n \right] =1 \\ \left( e_0 \sqrt{\frac{K_{\mathrm{ef},v}}{K_{\mathrm{ef},h}}}+1 \right) \left[ FV_Z (K_0) (1-n)+ FV_Z (K_i) n \right] =1 \end{aligned}\right. \end{aligned}$$
(33)

with

$$\begin{aligned} FV_{X}(K)&= K\frac{\sqrt{\frac{e^{2}K_{\mathrm{ef},h}^{3}+2eK\sqrt{K_{\mathrm{ef},h}^{3}K_{\mathrm{ef},v}}+K^{2}K_{\mathrm{ef},v}}{K_{\mathrm{ef},v}}}}{\left( eK_{\mathrm{ef},h}\sqrt{\frac{K_{\mathrm{ef},h}}{K_{\mathrm{ef},v}}}+K\right) \left( K_{\mathrm{ef},h}+eK\sqrt{\frac{K_{\mathrm{ef},h}}{K_{\mathrm{ef},v}}}\right) } \end{aligned}$$
(34)
$$\begin{aligned} FV_{Z}(K)&= K\frac{\sqrt{\frac{K_{\mathrm{ef},v}\left( e^{2}K^{2}+2eK\sqrt{K_{\mathrm{ef},h}K_{\mathrm{ef},v}}+K_{\mathrm{ef},h}K_{\mathrm{ef},v}\right) }{K_{\mathrm{ef},h}}}}{\left( eK_{\mathrm{ef},v} \sqrt{\frac{K_{\mathrm{ef},v}}{K_{\mathrm{ef,}h}}}+K\right) \left( K_{\mathrm{ef},v}+eK\sqrt{\frac{K_{\mathrm{ef},v}}{K_{\mathrm{ef},h}}}\right) } \end{aligned}$$
(35)

For 3D domains, the determination of the two independent components of the \(\mathbf {K}_\mathrm{ef}\) tensor result from the solution of the following system

$$\begin{aligned} \left\{ \begin{aligned} (1-n) \frac{ K_0/K_{\mathrm{ef},h}-1}{F_0 \left( K_0/K_{\mathrm{ef},h}-1 \right) +1}+ n \frac{ K_i/K_{\mathrm{ef},h}-1}{F_0 \left( K_i/K_{\mathrm{ef},h}-1 \right) +1}=0 \\ (1-n) \frac{ K_0/K_{\mathrm{ef},v}-1}{F_0 \left( K_0/K_{\mathrm{ef},v}-1 \right) +1}+ n \frac{ K_i/K_{\mathrm{ef},v}-1}{F_0 \left( K_i/K_{\mathrm{ef},v}-1 \right) +1}=0 \end{aligned}\right. \end{aligned}$$
(36)

with

$$\begin{aligned} F_{0}=\frac{1}{2}\left( \frac{e_\mathrm{s}}{\sqrt{(1-e_\mathrm{s}^{2})^{3}}}\cot ^{-1}\left( \frac{e_\mathrm{s}}{\sqrt{1-e_\mathrm{s}^{2}}}\right) -\frac{e_\mathrm{s}^{2}}{1-e_\mathrm{s}^{2}}\right) ;\quad e_\mathrm{s}=\sqrt{K_{\mathrm{ef},h}/K_{\mathrm{ef},v}} \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarlenga, A., Fiori, A. Advective Transport Through Three-Dimensional Anisotropic Formations of Bimodal Hydraulic Conductivity. Transp Porous Med 107, 573–593 (2015). https://doi.org/10.1007/s11242-015-0455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0455-3

Keywords

Navigation