Skip to main content
Log in

Monitoring of Pollutant Diffusion into Clay Liners by Electrical Methods

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A non-destructive test was carried out on a liner material—sand bentonite mixture (SB) with a continuous concentration diffusion of NaCl electrolyte. The work reported studied the spacio-temporal variation of the electrical conductivity \(\sigma ^{*}_{\mathrm{s}}\) (z, t) in a diffusion soil column with different heights. A relationship between the interstitial pore fluid concentration of SB and the electrical conductivity of the solution has been established by mixing and compacting samples of sand bentonite with NaCl electrolytes at different concentrations. Electrical conductivity of compacted specimens was measured with a two-electrode cell. The conductivity measurements were used to quantify the pore fluid concentration and effective diffusion coefficient of SB liners. It is concluded here that the electrical conductivity of compacted specimens depends mainly on the salt concentration in the pore fluid and it could be used to measure ionic movement through liners during diffusion. The experimental diffusion coefficient reached theoretical diffusion coefficient when sample height is equal to 40 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Avant projet d’arrêté ministériel fixant les prescriptions techniques relatives au centre d’enfouissement techniques, Algérie 2002

  2. NF P94-093: reconnaissance et essais - Détermination des références de compactage d’un matériau - Essai Proctor normal. Essai Proctor modifié. Paris: AFNOR 1999

References

  • Abu-Hassanein, Z.S., Benson, C.H., Blotz, L.R.: Electrical resistivity of compacted clays. J. Geotech. Eng. 122(5), 397–406 (1996). doi:10.1061/(ASCE)0733-9410(1996)122:5(397)

    Article  Google Scholar 

  • Ahl, J., Lu, X.: Studying of salt diffusion behaviour in brick. J. Mater. Sci. 42(7), 2512–2520 (2007). doi:10.1007/s10853-006-1005-8

    Article  Google Scholar 

  • Bear, J., Bachmat, Y.: Introduction to Modelling of Transport Phenomena in Porous Media, 2nd edn. Springer, New York (1990)

    Book  Google Scholar 

  • Bezzar, A., François, D., Ghomari, F.: Geochemical study of clays used as barriers in landfills. Comptes Rendus Geosci. 342(9), 695–700 (2010). doi:10.1016/j.crte.2010.03.008

    Article  Google Scholar 

  • Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1975)

    Google Scholar 

  • Curtis, J., Narayanan, R.: Effects of laboratory procedures on soil electrical property measurements. IEEE Trans. Instrum. Meas. 47(6), 1474–1480 (1998). doi:10.1109/19.746715

    Article  Google Scholar 

  • Daniel, D.E., Koerner, R.M.: Waste Containment Facilities: Guidance for Construction Quality Assurance and Construction Quality Control of Liner and Cover Systems. American Society of Civil Engineers, Reston (2007)

    Google Scholar 

  • Dias, C.A.: Analytical model for a polarizable medium at radio and lower frequencies. J. Geophys. Res. 77(26), 4945–4956 (1972). doi:10.1029/JB077i026p04945

    Article  Google Scholar 

  • Friedman, S.P.: Soil properties influencing apparent electrical conductivity: a review. Comput. Electron. Agric. 46(1–3), L45–L70 (2005). doi:10.1016/j.compag.2004.11.001

    Article  Google Scholar 

  • Friedman, S.P., Jones, S.B.: Measurement and approximate critical path analysis of the pore-scale-induced anisotropy factor of an unsaturated porous medium. Water Resour. Res. 37(12), 2929–2942 (2001). doi:10.1029/2000wr000095

    Article  Google Scholar 

  • Friedman, S.P., Robinson, D.A.: Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media. Water Resour. Res. 38(11) (2002). doi:10.1029/2001wr000746.

  • Fukue, M., Minato, T., Matsumoto, M., Horibe, H., Taya, N.: Use of a resistivity cone for detecting contaminated soil layers. Eng. Geol. 60(1–4), 361–369 (2001). doi:10.1016/s0013-7952(00)00116-2

    Article  Google Scholar 

  • Gillham, R.W., Robin, M.J.L., Dytynyshyn, D.J., Johnston, H.M.: Diffusion of nonreactive and reactive solutes through fine-grained barrier materials. Can. Geotech. J. 21(3), 541–550 (1984)

    Article  Google Scholar 

  • Kaya, A., Fang, H.Y.: Identification of contaminated soils by dielectric constant and electrical conductivity. J. Environ. Eng. 123(2), 169–177 (1997). doi:10.1061/(asce)0733-9372(1997)123:2(169)

    Article  Google Scholar 

  • Keller, G.V.: Frischknecht. Electrical methods in geophysical prospecting, F.C. (1966)

  • McCarter, W.J.: The electrical-resistivity characteristics Of compacted clays. Geotechnique 34(2), 263–267 (1984)

    Article  Google Scholar 

  • Mitchell, J.K., Arulanandan, K.: Electrical dispersion in relation to soil structure. J. Soil. Mech. Found. Div. ASCE 94, 447–471 (1968)

    Google Scholar 

  • Muurinen, A.: Diffusion of Anions and Cations in Compacted Sodium Bentonite. VTT Publications, Espoo (1994)

    Google Scholar 

  • Oh, M., Kim, Y., Park, J.: Factors affecting the complex permittivity spectrum of soil at a low frequency range of 1 kHz–10 MHz. Environ. Geol. 51(5), 821–833 (2007). doi:10.1007/s00254-006-0362-6

    Article  Google Scholar 

  • Oh, M., Seo, M.W., Lee, S., Park, J.: Applicability of grid-net detection system for landfill leachate and diesel fuel release in the subsurface. J. Contam. Hydrol. 96(1–4), 69–82 (2008). doi:10.1016/j.jconhyd.2007.10.002

    Article  Google Scholar 

  • Revil, A.: Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in colloids and granular porous media: a unified model. J. Colloid Interface Sci. 212(2), 503–522 (1999). doi:10.1006/jcis.1998.6077

    Article  Google Scholar 

  • Rhoades, J., Oster, J.: Solute content. In: Klute, A. (ed.) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, pp. 985–1006. American Society of Agronomy, Madison (1986)

    Google Scholar 

  • Rinaldi, V.A., Cuestas, G.A.: Ohmic conductivity of a compacted silty clay. J. Geotech. Geoenviron. Eng. 128(10), 824–835 (2002). doi:10.1061/(asce)1090-0241(2002)128:10(824)

    Article  Google Scholar 

  • Rinaldi, V.A., Francisca, F.M.: Impedance analysis of soil dielectric dispersion (1 MHz–1 GHz). J. Geotech. Geoenviron. Eng. 125(2), 111–121 (1999). doi:10.1061/(asce)1090-0241(1999)125:2(111)

    Article  Google Scholar 

  • Rinaldi, V.A., Redolfi, E.R.: The dielectric constant of soil-NAPL mixtures at low frequencies (100 Hz-10 MHz). In: Nonaqueous phase liquids (NAPLs) in the subsurface environment: assessment and remediation, Washington 1996, pp. 163–174. ASCE.

  • Robinson, D.A., Friedman, S.P.: Electrical conductivity and dielectric permittivity of sphere packings: measurements and modelling of cubic lattices, randomly packed monosize spheres and multi-size mixtures. Phys. A 358(2–4), 447–465 (2005). doi:10.1016/j.physa.2005.03.054

    Google Scholar 

  • Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths Scientific Publications, London (1959)

    Google Scholar 

  • Rowe, R.K., Badv, K.: Chloride migration through clayey silt underlain by fine sand or silt. J. Geotech. Eng. 122(1), 60–68 (1996)

    Article  Google Scholar 

  • Saarenketo, T.: Electrical properties of water in clay and silty soils. J. Appl. Geophys. 40(1–3), 73–88 (1998). doi:10.1016/s0926-9851(98)00017-2

    Article  Google Scholar 

  • Sen, P.N.: Unified model of conductivity and membrane-potential of porous-media. Phys. Rev. B 39(13), 9508–9517 (1989). doi:10.1103/PhysRevB.39.9508

    Article  Google Scholar 

  • Shackelford, C.D., Daniel, D.E.: Diffusion in saturated soil. 2. Results for compacted clay. J. Geotech. Eng. 117(3), 485–506 (1991)

    Article  Google Scholar 

  • Shainberg, I., Rhoades, J.D., Prather, R.J.: Effect of exchangeable sodium percentage, cation-exchange capacity, and soil solution concentration on soil electrical-conductivity. Soil Sci. Soc. Am. J. 44(3), 469–473 (1980)

    Article  Google Scholar 

  • Shang, J.Q., Lo, K.Y.: Inculet, II: Polarization and conduction of clay water–electrolyte systems. J. Geotech. Eng. 121(3), 243–248 (1995). doi:10.1061/(asce)0733-9410(1995)121:3(243)

    Article  Google Scholar 

  • Smith, D., Pivonka, P., Jungnickel, C., Fityus, S.: Theoretical analysis of anion exclusion and diffusive transport through platy-clay soils. Transp. Porous Med. 57(3), 251–277 (2004). doi:10.1007/s11242-003-4056-1

    Article  Google Scholar 

  • Smith-Rose, R.: The electrical properties of soil for alternating currents at radio frequencies. Proc. R. Soc. Lond. Ser. A 140(841), 359–377 (1933)

    Article  Google Scholar 

  • Van Loon, L.R., Glaus, M.A., Mueller, W.: Anion exclusion effects in compacted bentonites: towards a better understanding of anion diffusion. Appl. Geochem. 22(11), 2536–2552 (2007). doi:10.1016/j.apgeochem.2007.07.008

    Article  Google Scholar 

  • Yoon, G.L., Oh, M.H., Park, J.B.: Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer. Environ. Geol. 43(1–2), 18–28 (2002). doi:10.1007/s00254-002-0649-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bezzar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezzar, A., Ghomari, F. Monitoring of Pollutant Diffusion into Clay Liners by Electrical Methods. Transp Porous Med 97, 147–159 (2013). https://doi.org/10.1007/s11242-012-0115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0115-9

Keywords

Navigation