Skip to main content

Laboratory Study of the Detection of Metal Contaminated Clay Layer Using Four-Electrode Resistivity Cone

  • Conference paper
  • First Online:
Proceedings of the 8th International Congress on Environmental Geotechnics Volume 2 (ICEG 2018)

Part of the book series: Environmental Science and Engineering ((ENVENG))

Included in the following conference series:

  • 2372 Accesses

Abstract

Electrical resistivity measurements provide potentially powerful tool for detection of heavy metal contaminated soil, which is on the rise in the whole world with the boost of industrialization and urbanization. A four-electrode resistivity cone penetrometer (RCPT) test (non-destructive, continuous, reliable, and demonstrates strong correlation with subsurface information such as soil properties, stratigraphy, and the location of anomalies) was used to detect metal contaminated soil layers in this study. To investigate the relationship between electrical resistivity and unsaturated subsurface conditions with varying physical property and metal contamination, the polluted clays were synthesized with controlled metal ions concentration and moisture content of loading in a chamber. A series of tests of polluted clay was performed and the mechanism of these tests were analyzed by electrical conduction theory. For all tested soils, the results show that increasing the degree of saturation and metal ions concentration on the clay led to a reduction in the electrical resistivity of clay, while increasing the porosity led to a higher electrical resistivity for the clay. It indicates that altering the porosity and saturation of polluted clay sample changed the ionic movement within the clay’s interlayer. In addition, data gotten by four-electrode soil resistivity box test was used to compare with the data measured from RCPT. The results showed that a linear approximation was sufficient in relating resistivity ρs of soil resistivity box to resistivity ρr of RCPT. In general, the RCPT was well used to examine the pollution of soil and the effects of remediation effectively in-suit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Du YJ, Jin F, Liu SY et al (2011) Review of stabilization/solidification technique for remediation of heavy metals contaminated lands. Rock Soil Mech 32(1):116–124

    Google Scholar 

  • Yoon GL, Park JB (2001) Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils. J Hazard Mater 84:147–161

    Article  Google Scholar 

  • Fukue M, Minato T, Horibe H, Taya N (1999) The micro-structures of clay given by resistivity measurements. Eng Geol 54(1):43–53

    Article  Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, Hoboken

    Google Scholar 

  • Chu Y, Liu S, Wang F, Cai G, Bian H (2017a) Estimation of heavy metal-contaminated soils’ mechanical characteristics using electrical resistivity. Environ Sci Pollut Res Int 24(15):13561–13575

    Article  Google Scholar 

  • Chu Y, Liu S, Bate B, Xu L (2017b) Evaluation on expansive performance of the expansive soil using electrical responses. J Appl Geophys 148:265–271

    Article  Google Scholar 

  • Tang LS (2000) Mechanical effect of chemical action of water on soil and analysis on its mechanism. J Sun yat-sen Univ (Nat Sci Ed) 39(4):104–109

    Google Scholar 

  • Su O, Momayez M (2017) Indirect estimation of electrical resistivity by abrasion and physico-mechanical properties of rocks. J Appl Geophys 143:23–30

    Article  Google Scholar 

  • Campanella RG, Weemees I (1990) Development and use of an electrical resistivity cone for groundwater contamination studies. Can Geotech J 27(5):557–567

    Article  Google Scholar 

  • ASTM D G57-06 (2012) Standard test method for field measurement of soil resistivity using the Wenner four-electrode method. USA ASTM International

    Google Scholar 

Download references

Acknowledgment

Majority of the work presented in this paper was funded by the Key Project of Natural Science Foundation of China (Grant No. 41330641), the Research Innovation Project of Ordinary University Graduate Student of Jiangsu Province (Grant No. KYLX15_0140), and the postgraduate program of high-level university of national construction (201606090143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, Y., Liu, S., Cai, G., Bian, H., Xu, L. (2019). Laboratory Study of the Detection of Metal Contaminated Clay Layer Using Four-Electrode Resistivity Cone. In: Zhan, L., Chen, Y., Bouazza, A. (eds) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 2. ICEG 2018. Environmental Science and Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-13-2224-2_44

Download citation

Publish with us

Policies and ethics