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The paper investigates measures of explanatory power and how to define the inference schema “Inference to the Best Explanation” (IBE). It argues that these measures can also be used to quantify the systematic power of a hypothesis and defines the inference schema “Inference to the Best Systematization” (IBS). It demonstrates that systematic power is a fruitful criterion for theory choice and that IBS is truth-conducive. It also shows that even radical Bayesians must admit that systematic power is an integral component of Bayesian reasoning. Finally, the paper puts the achieved results in perspective with van Fraassen’s famous criticism of IBE.
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                    Notes
	Some philosophers argue that one must relativize the third premise to a set of available hypotheses. Whether some hypothesis is the best explanation can only be evaluated in contrast to other hypotheses, so the argument goes.


	Note that the following Requirement 2 seems to admit of the possibility that some hypotheses can explain the evidence while actually lowering its probability. (The requirement specifies how a measure of explanatory power behaves in case \(\Pr (E|H)<\Pr (E)\), even though we do not know whether the assumption that the hypothesis actually explains the evidence is compatible with the case of \(\Pr (E|H)<\Pr (E)\). A Gricean implicature of this specification is that advocates of this requirement are ready to admit the possibility that a hypothesis explains the evidence even though \(\Pr (E|H)<\Pr (E)\). If they do not admit that this is a possible case, why would they specify a necessary requirement for it?). Thus, it is an interesting question whether this is possible, and the answer certainly depends on the notion of explanation presupposed. For example, probabilistic theories of causation allow for the possibility of probability-lowering causes. Thus, given an understanding of explanation as casual explanation it seems possible to give an explanation of some observational fact by citing a cause that decreases the probability. For a discussion of the formal requirement in the context of confirmation theory, see Crupi (2007).


	I adopt the following notational convention with respect to function terms: I use gothic fonts for function variables and normal calligraphic fonts for function constants.


	A closely related requirement can already be found in the work of Harman (1967) in connection with the inference schema IBE (even though it is restricted to statistical probabilities and statistical hypotheses). Harman calls it the generalized maximum likelihood condition. Crupi calls a related requirement for measures of confirmation the Final Probability requirement. For a discussion of the latter requirement see Crupi (2013).


	The original formulation of Popper’s (1959) measure of explanatory power is this: \(ep_{\Pr }^{Popper}(E,H)=\frac{\Pr (E|H)-\Pr (H)}{\Pr (E|H)+\Pr (H)}\).


	Especially since such an undertaking would not only require a great deal of interpretational work, but we would also have to elaborate the basis upon which we disagree with Rescher’s arguments.


	In this theorem and in Theorem 3 and Corollary 1 below we assume that the probability function is a strict or regular probability function. Thus, in Howson’s words, the theorems again confirm

                        
                          Hume’s argument that there is no sound inductive argument from experiential data that does not incorporate an inductive premise, and it also tells us what the inductive premise will look like: it will be a probability assignment that is not deducible from the probability axioms. (Howson 2003, p. 134)

                        


                      Without the “inductive premise” that we are dealing with a strict or regular probability function, we would have to replace the ‘\(>\)’ in Point 2 of Theorems 1–3 by ‘\(\ge \)’. In consequence, considerations of systematic power could not distinguish between a logically stronger true hypothesis \(H_1\) and a logically weaker true hypothesis \(H_2\), if both of them had the same prior probability despite the difference in their logical strength. Indeed no purely probabilistic inference rule could distinguish between them, since from a probabilistic perspective there would be no discernible difference between the hypotheses, because in this case \(\Pr (H_2\rightarrow H_1)=1\) and, thus, Bayesians would treat \((H_2\rightarrow H_1\wedge H_2)\) as if it were a logical truth. For a longer and more comprehensive discussion of the connection between logical strength, prior probabilities (or informativity) and theory choice see Brössel (2014).


	Hempel (1960), and Levi (1967) and Huber (2008) disagree in their evaluation of false hypotheses. Where Hempel prefers logically weaker false hypotheses to logically stronger false hypotheses, Levi and Huber prefer logically stronger false hypotheses to logically weaker false hypotheses. For discussion, see Brössel (2014).
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Appendix
Appendix
1.1 Proof of Theorem 1
                           
We have to show that \(ep^1\)–\(ep^3\) satisfy requirements 1–3.

                    Proof for
                    \(ep^1\)
                    
	
                        1.
                        
                          
                                          \(ep^1\) satisfies Requirement 1 trivially. It is defined in terms of probabilities.

                        
                      
	
                        2.
                        
                          
                                          \(ep^1\) satisfies Requirement 2 with marker 1: 
$$\begin{aligned} ep_{\Pr }^1(H,E)= \frac{\Pr (E|H)}{\Pr (E)}= {\left\{ \begin{array}{ll} >1, &{} \Pr (E|H )>\Pr (E)\\ =1, &{} \Pr (E|H )=\Pr (E)\\ <1, &{} \Pr (E|H )<\Pr (E) \end{array}\right. } \end{aligned}$$


                                       
                        
                      
	
                        3.
                        
                          
                                          \(ep^1\) satisfies Requirement 3: if \(\Pr (E|H_1)>\Pr (E|H_2)\), then 
$$\begin{aligned} ep_{\Pr }^1(H_1,E)=\frac{\Pr (E|H_1)}{\Pr (E)}>\frac{\Pr (E|H_2)}{\Pr (E)}=ep_{\Pr }^1(H_2,E). \end{aligned}$$


                                       
                        
                      


                    Proof for
                    \(ep^2\)
                    
	
                        1.
                        
                          
                                          \(ep^2\) satisfies Requirement 1 trivially. It is defined in terms of probabilities.

                        
                      
	
                        2.
                        
                          
                                          \(ep^2\) satisfies Requirement 2 with marker 0: First note that 
$$\begin{aligned} ep_{\Pr }^2(H,E)= \frac{\Pr (H|E)-\Pr (H|\lnot E)}{\Pr (H|E)+\Pr (H|\lnot E)}={\left\{ \begin{array}{ll} >0, &{} \Pr (H|E )>\Pr (H|\lnot E)\\ =0, &{} \Pr (H|E )=\Pr (H|\lnot E)\\ <0, &{} \Pr (H|E )<\Pr (H|\lnot E) \end{array}\right. } \end{aligned}$$

 Now we only have to see that 
$$\begin{aligned} \Pr (H|E )\begin{array}{rl} >\\ = \\ < \end{array} \Pr (H|\lnot E) \Leftrightarrow \Pr (H|E)\begin{array}{rl} >\\ = \\ < \end{array}\Pr (H)\Leftrightarrow \Pr (E|H)\begin{array}{rl} >\\ = \\ < \end{array}\Pr (E) \end{aligned}$$


                                       
                        
                      
	
                        3.
                        
                          
                                          \(ep^2\) satisfies Requirement 3: if \(\Pr (E|H_1)>\Pr (E|H_2)\), then
	
                                (a)
                                
                                  
                                    \(\frac{\Pr (E|H_1)}{\Pr (E)}>\frac{\Pr (E|H_2)}{\Pr (E)}\)
                                  

                                
                              
	
                                (b)
                                
                                  
                                                        \(\Pr (\lnot E|H_1)<\Pr (\lnot E|H_2)\) and, thus, also: \(\frac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}<\frac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\)
                                                    

                                
                              


                                       
                          (a) and (b) imply that: 
$$\begin{aligned} \left[ \frac{\Pr (E|H_1)}{\Pr (E)}\times \frac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\right]- & {} \left[ \frac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\times \frac{\Pr (E|H_2)}{\Pr (E)}\right] \\> & {} \\ \left[ \frac{\Pr (E|H_2)}{\Pr (E)}\times \frac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\right]- & {} \left[ \frac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\times \frac{\Pr (E|H_1)}{\Pr (E)}\right] \end{aligned}$$

 and that therefore: 
$$\begin{aligned} \bigg [\frac{\Pr (E|H_1)}{\Pr (E)}\times \frac{\Pr (E|H_2)}{\Pr (E)}+\frac{\Pr (E|H_1)}{\Pr (E)}\times \frac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\bigg ]- & {} \bigg [\frac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\times \frac{\Pr (E|H_2)}{\Pr (E)}+\frac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\times \frac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\bigg ]\\> & {} \\ \bigg [\frac{\Pr (E|H_1)}{\Pr (E)}\times \frac{\Pr (E|H_2)}{\Pr (E)}+\frac{\Pr (E|H_2)}{\Pr (E)}\times \frac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\bigg ]- & {} \bigg [\frac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\times \frac{\Pr (E|H_1)}{\Pr (E)}+\frac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\times \frac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\bigg ] \end{aligned}$$

 and 
$$\begin{aligned} \bigg [\frac{\Pr (E|H_1)}{\Pr (E)}-\frac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\bigg ]\times & {} \bigg [\frac{\Pr (E|H_2)}{\Pr (E)}+\frac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\bigg ]\\> & {} \\ \bigg [\frac{\Pr (E|H_2)}{\Pr (E)}-\frac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\bigg ]\times & {} \bigg [\frac{\Pr (E|H_1)}{\Pr (E)}+\frac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\bigg ] \end{aligned}$$

 which implies: 
$$\begin{aligned} \frac{\bigg [\dfrac{\Pr (E|H_1)}{\Pr (E)}-\dfrac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\bigg ]}{\bigg [\dfrac{\Pr (E|H_1)}{\Pr (E)}+\dfrac{\Pr (\lnot E|H_1)}{\Pr (\lnot E)}\bigg ]} >\frac{\bigg [\dfrac{\Pr (E|H_2)}{\Pr (E)}-\dfrac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\bigg ]}{\bigg [\dfrac{\Pr (E|H_2)}{\Pr (E)}+\dfrac{\Pr (\lnot E|H_2)}{\Pr (\lnot E)}\bigg ]} \end{aligned}$$

 We can reformulate this as follows: 
$$\begin{aligned} \frac{\bigg [\dfrac{\Pr (H_1|E)}{\Pr (H_1)}-\dfrac{\Pr (H_1|\lnot E)}{\Pr (H_1)}\bigg ]}{\bigg [\dfrac{\Pr (H_1|E)}{\Pr (H_1)}+\dfrac{\Pr (H_1|\lnot E)}{\Pr (H_1)}\bigg ]} >\frac{\bigg [\dfrac{\Pr (H_2|E)}{\Pr (H_2)}-\dfrac{\Pr (H_2|\lnot E)}{\Pr (H_2)}\bigg ]}{\bigg [\dfrac{\Pr (H_2|E)}{\Pr (H_2)}+\dfrac{\Pr (H_2|\lnot E)}{\Pr (H_2)}\bigg ]} \end{aligned}$$

 Finally, by cancelling \(\Pr (H_1)\), respectively \(\Pr (H_2)\) out of these formulae we get the desired result: 
$$\begin{aligned} \frac{\big [\Pr (H_1|E)-\Pr (H_1|\lnot E)\big ]}{\big [\Pr (H_1|E)+\Pr (H_1|\lnot E)\big ]} >\frac{\big [\Pr (H_2|E)-\Pr (H_2|\lnot E)\big ]}{\big [\Pr (H_2|E)+\Pr (H_2|\lnot E)\big ]} \end{aligned}$$


                                       
                        
                      


                    Proof for
                    \(ep^3\)
                    
	
                        1.
                        
                          
                                          \(ep^3\) satisfies Requirement 1 trivially. It is defined in terms of probabilities.

                        
                      
	
                        2.
                        
                          
                                          \(ep^3\) satisfies Requirement 2 with marker 0: First note that 
$$\begin{aligned} ep_{\Pr }^3(H, E)= {\left\{ \begin{array}{ll}\frac{\Pr (E|H)-\Pr (E)}{1- \Pr (E)} &{} \hbox { if } \Pr (E|H )\ge \Pr (E)>0\\ \frac{\Pr (E|H)-\Pr (E)}{\Pr (E)} &{} \hbox { if } \Pr (E|H )< \Pr (E)\\ \end{array}\right. } \end{aligned}$$

 Thus, 
[image: ]


                                       
                        
                      
	
                        3.
                        
                          
                                          \(ep^2\) satisfies Requirement 3: if \(\Pr (E|H_1)>\Pr (E|H_2)\), then
	
                                (a)
                                
                                  
                                                        \(ep_{\Pr }^3(H_1,E)=\frac{\Pr (E|H_1)-\Pr (E)}{1-\Pr (E)}>ep_{\Pr }^3(H_2,E)=\frac{\Pr (E|H_2)-\Pr (E)}{1-\Pr (E)}\), if \(\Pr (E|H_1)\ge \Pr (E)\) and \(\Pr (E|H_2)\ge \Pr (E)\).

                                
                              
	
                                (b)
                                
                                  
                                                        \(ep_{\Pr }^3(H_1,E)=\frac{\Pr (E|H_1)-\Pr (E)}{\Pr (E)}>ep_{\Pr }^3(H_2,E)=\frac{\Pr (E|H_2)-\Pr (E)}{\Pr (E)}\), if \(\Pr (E|H_1)<\Pr (E)\) and \(\Pr (E|H_2)<\Pr (E)\).

                                
                              
	
                                (c)
                                
                                  
                                                        \(ep_{\Pr }^3(H_1,E)=\frac{\Pr (E|H_1)-\Pr (E)}{1-\Pr (E)}>ep_{\Pr }^3(H_2,E)=\frac{\Pr (E|H_2)-\Pr (E)}{\Pr (E)}\), if \(\Pr (E|H_1)\ge \Pr (E)\) and \(\Pr (E|H_2)<\Pr (E)\).

                                
                              


                                       
                        
                      


                  1.2 Proof of Theorem 2
                           
Let W be a set of possible worlds and let \(\mathcal {A}\) be some algebra over W. The elements of \(\mathcal {A}\) are interpreted as propositions. Let \(e_0,\ldots , e_n,\ldots \) be a sequence of propositions of \(\mathcal {A}\) which separates W, and let \(e^w_i =e_i\) if \(w\vDash e_i\) and \(\lnot e_i\) otherwise. Let \(\Pr \) be a strict (or regular) probability function on \(\mathcal {A}\). Let \(\Pr ^*\) be the unique probability function on the smallest \(\sigma \)-field \(\mathcal {A}^*\) containing the field \(\mathcal {A}\) satisfying \(\Pr ^*(A)=\Pr (A)\) for all \(A\in \mathcal {A}\). Then there is a \(W^\prime \subseteq W\) with \(\Pr ^*(W^\prime )=1\) so that the following holds for every \(w\in W^\prime \) and all hypotheses \(H \in \mathcal {A}\) and for all \(\mathfrak {sp}_{\Pr }\) satisfying Requirements 1–3.
Then, according to the Gaifman–Snir Theorem (1982), there is a \(W^\prime \subseteq W\) with \(\Pr ^*(W^\prime )=1\) so that the following holds for every \(w\in W^\prime \) and all theories H of \(\mathcal {A}\):
$$\begin{aligned} \lim _{n\implies \infty }\Pr (H|E^w_n)=\mathcal {I}(H,w) \end{aligned}$$

where \(\mathcal {I}(H,w)=1\), if \(w\vDash H\) and 0 otherwise.
	
                        1.
                        
                          Suppose \(w\vDash H_1\) 
                                          and 
                                          \(w\vDash \lnot H_2\). Then \(\lim _{n\implies \infty }\Pr (H_1|E^w_n)=1\) and \(\lim _{n\implies \infty }\Pr (H_2|E^w_n)=0\) which implies that \( \exists n \forall m\ge n:\Pr (H_1|E^w_n)>\Pr (H_1) \& \Pr (H_2|E^w_n)<\Pr (H_2)\). The latter entails by symmetry of probabilistic relevance that \( \exists n \forall m\ge n:\Pr (E^w_n|H_1)>\Pr (E^w_n) \& \Pr (E^w_n|H_2)<\Pr (E^w_n)\) and that therefore \(\exists n \forall m\ge n:\Pr (E^w_n|H_1)>\Pr (E^w_n|H_2)\). Thus, with Requirement 3 on measures of explanatory and systematic power we can conclude that: \(\exists n \forall m\ge n: [\mathfrak {sp}_{\Pr }(H_1, E^w_m )>\mathfrak {sp}_{\Pr }(H_2 , E^w_m )]\).

                        
                      
	
                        2.
                        
                          Suppose \(w\vDash H_1\cap H_2\) and \(H_1\vDash H_2\), but \(H_2\nvDash H_1\). We already know that 
$$\begin{aligned} \lim _{n\rightarrow \infty }\left[ \frac{\Pr (H|E_n^w)}{\Pr (H)}\right] = \dfrac{1}{\Pr (H)},\hbox { if }\lim _{n\implies \infty }\Pr (H|E^w_n)=1. \end{aligned}$$

 and thus that 
$$\begin{aligned} \lim _{n\rightarrow \infty }\left[ \frac{\Pr (E_n^w|H)}{\Pr (E_n^w)}\right] = \dfrac{1}{\Pr (H)},\hbox { if }\lim _{n\implies \infty }\Pr (H|E^w_n)=1. \end{aligned}$$

 The latter implies that 
$$\begin{aligned} \lim _{n\rightarrow \infty }\left[ \frac{\Pr (E_n^w|H_1)}{\Pr (E_n^w)}\right] = \dfrac{1}{\Pr (H_1)}>\lim _{n\rightarrow \infty }\left[ \frac{\Pr (E_n^w|H_2)}{\Pr (E_n^w)}\right] = \dfrac{1}{\Pr (H_2)} \end{aligned}$$

 since \(H_1\vDash H_2\) implies that \(H_2\nvDash H_1\), \(\Pr (H_1)<\Pr (H_2)\). This means that 
$$\begin{aligned} \lim _{n\rightarrow \infty }\left[ \Pr (E_n^w|H_1)\right] >\lim _{n\rightarrow \infty }\left[ \Pr (E_n^w|H_2)\right] \end{aligned}$$

 and that therefore \(\exists n \forall m\ge n:\Pr (E^w_n|H_1)>\Pr (E^w_n|H_2)\). Thus, with Requirement 3 on measures of explanatory and systematic power we can conclude that: 
$$\begin{aligned} \exists n \forall m\ge n: [\mathfrak {sp}_{\Pr }(H_1, E^w_m )>\mathfrak {sp}_{\Pr }(H_2 , E^w_m )]. \end{aligned}$$


                                       
                        
                      

where \(E^w_m=\bigcap _{0\le i\le m}e^w_i\).
1.3 Proof of Theorem 3
                           
Let W be a set of possible worlds and let \(\mathcal {A}\) be some algebra over W. The elements of \(\mathcal {A}\) are interpreted as propositions. Let \(e_0,\ldots , e_n,\ldots \) be a sequence of propositions of \(\mathcal {A}\) which separates W, and let \(e^w_i =e_i\) if \(w\vDash e_i\) and \(\lnot e_i\) otherwise. Let \(\Pr \) be a strict (or regular) probability function on \(\mathcal {A}\). Let \(\Pr ^*\) be the unique probability function on the smallest \(\sigma \)-field \(\mathcal {A}^*\) containing the field \(\mathcal {A}\) satisfying \(\Pr ^*(A)=\Pr (A)\) for all \(A\in \mathcal {A}\). Then there is a \(W^\prime \subseteq W\) with \(\Pr ^*(W^\prime )=1\) so that the following holds for every \(w\in W^\prime \) and all hypotheses \(H \in \mathcal {A}\) and for all \(\mathfrak {sp}_{\Pr }\) satisfying Requirements 1–3.
	
                        1.
                        
                          Suppose there is a \(H_j\in \{H_1, \ldots , H_n\}\) such that \(w\vDash H_j\). Then according to Theorem 2, for every false hypothesis \(H_i\in \{H_1, \ldots , H_n\}\) and all for all \(\mathfrak {sp}_{\Pr }\) satisfying Requirements 1–3: \(\exists n \forall m\ge n: [\mathfrak {sp}_{\Pr }(H_j, E^w_m )>\mathfrak {sp}_{\Pr }(H_i , E^w_m )]\) (note Requirement 3 is the crucial requirement here). Since there are only finitely many false hypotheses in \(\{H_1, \ldots , H_n\}\) we can conclude that: 
$$\begin{aligned}&\exists n \forall m\ge n \hbox { such that }\exists H_j\in \{H_1, \ldots , H_n\}\hbox { with }w\vDash H_j\hbox { and } \forall H_i\in \{H_1, \ldots , H_n\}\hbox { with }w\vDash \lnot H_i:\\&\quad [\mathfrak {sp}_{\Pr }(H_j, E^w_m )>\mathfrak {sp}_{\Pr }(H_i , E^w_m )] \end{aligned}$$

 Thus, with Definition 9 we can conclude that: \(\exists n \forall m\ge n\) such that if \(H_i\) is the best systematization for \(E^w_m\) with respect to the set of hypotheses \(\{H_1, \ldots , H_n\}\), then \(w\vDash H_i\). For Definitions 10 and 11 we can show the same since according to Theorem 2 the true hypothesis will be more probable than the false ones after finitely many steps of observation and for every observation thereafter.

                        
                      
	
                        2.
                        
                          The proof for the second part proceeds along the same lines.

                        
                      

where \(E^w_m=\bigcap _{0\le i\le m}e^w_i\).
1.4 Proof of Theorem 6
                           

                              $$\begin{aligned}&\Pr _{t_0}(H|E)=\frac{\dfrac{e^{\tanh ^{-1}\left[ {sp^2}_{t_0}(H,E)\right] } \Pr _{t_0}(E)}{e^{\tanh ^{-1}\left[ {sp^2}_{t_0}(H,E)\right] } \Pr _{t_0}(E)+e^{\tanh ^{-1}{sp^2}_{t_0}(H,\lnot E)} \Pr _{t_0}(\lnot E)}}{\Pr _{t_0}(E)}\times \Pr _{t_0}(H)\\&\quad =\frac{\dfrac{e^{\frac{1}{2}\left[ \log \left[ {sp^2}_{t_0}(H,E)+1\right] -\log \left[ 1-{sp^2}_{t_0}(H,E)\right] \right] } \Pr _{t_0}(E)}{e^{\frac{1}{2}\left[ \log \left[ {sp^2}_{t_0}(H,E)+1\right] -\log \left[ 1-{sp^2}_{t_0}(H,E)\right] \right] } \Pr _{t_0}(E)+e^{\frac{1}{2}\left[ \log \left[ {sp^2}_{t_0}(H,\lnot E)+1\right] -\log \left[ 1-{sp^2}_{t_0}(H,\lnot E)\right] \right] } \Pr _{t_0}(\lnot E)}}{\Pr _{t_0}(E)}\\&\qquad \times \Pr _{t_0}(H)\\&\quad =\frac{\dfrac{e^{\frac{1}{2}\left[ \log \left[ \frac{{sp^2}_{t_0}(H,E)+1}{1-{sp^2}_{t_0}(H,E)}\right] \right] } \Pr _{t_0}(E)}{e^{\frac{1}{2}\left[ \log \left[ \frac{{sp^2}_{t_0}(H,E)+1}{1-{sp^2}_{t_0}(H,E)}\right] \right] } \Pr _{t_0}(E)+e^{\frac{1}{2}\left[ \log \left[ \frac{{sp^2}_{t_0}(H,\lnot E)+1}{1-{sp^2}_{t_0}(H,\lnot E)}\right] \right] } \Pr _{t_0}(\lnot E)}}{\Pr _{t_0}(E)}\times \Pr _{t_0}(H) \end{aligned}$$

Now we know that
$$\begin{aligned} \frac{\frac{\Pr _{t_0}(\lnot E|H)}{\Pr _{t_0}(\lnot E)}}{\frac{\Pr _{t_0}(E|H)}{\Pr _{t_0}(E)}}&=\frac{e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|\lnot E)}{\Pr _{t_0}(H| E)}\right] }}{e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] }}\quad (\hbox {by the definition of }e\hbox { and }\log )\\ \frac{\Pr _{t_0}(\lnot E|H)}{\Pr _{t_0}(E|H)}&=\frac{\Pr _{t_0}(\lnot E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|\lnot E)}{\Pr _{t_0}(H| E)}\right] }}{\Pr _{t_0}(E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] }}\\ \frac{\Pr _{t_0}(\lnot E|H)}{\Pr _{t_0}(E|H)}+\frac{\Pr _{t_0}(E|H)}{\Pr _{t_0}(E|H)}&=\frac{\Pr _{t_0}(\lnot E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|\lnot E)}{\Pr _{t_0}(H| E)}\right] }}{\Pr _{t_0}(E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] }}+\frac{\Pr _{t_0}(E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] }}{\Pr _{t_0}(E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] }}\\ \frac{1}{\Pr _{t_0}(E|H)}&=\frac{\Pr _{t_0}(\lnot E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|\lnot E)}{\Pr _{t_0}(H| E)}\right] }+\Pr _{t_0}(E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] }}{\Pr _{t_0}(E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] }}\\ \Pr _{t_0}(E|H)&=\frac{\Pr _{t_0}(E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] }}{\Pr _{t_0}(\lnot E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|\lnot E)}{\Pr _{t_0}(H| E)}\right] }+\Pr _{t_0}(E)\times e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] }}\\ \Pr _{t_0}(E|H)&=\frac{e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] } \Pr _{t_0}(E)}{e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|E)}{\Pr _{t_0}(H|\lnot E)}\right] } \Pr _{t_0}(E)+e^{\frac{1}{2}\log \left[ \frac{\Pr _{t_0}(H|\lnot E)}{\Pr _{t_0}(H| E)}\right] } \Pr _{t_0}(\lnot E)} \end{aligned}$$

and since \(\frac{{sp^2}_{t_0}(H,E)+1}{1-{sp^2}_{t_0}(H,E)}=\frac{\Pr (H|E)}{\Pr (H|\lnot E)}\) we can conclude that
$$\begin{aligned} \Pr _{t_0}(H|E)&=\frac{\Pr _{t_0}(E|H)}{\Pr _{t_0}(E)}\times \Pr _{t_0}(H) \end{aligned}$$
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