Skip to main content
Log in

Different senses of finitude: An inquiry into Hilbert’s finitism

  • Published:
Synthese Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This article develops a critical investigation of the epistemological core of Hilbert’s foundational project, the so-called the finitary attitude. The investigation proceeds by distinguishing different senses of ‘number’ and ‘finitude’ that have been used in the philosophical arguments. The usual notion of modern pure mathematics, i.e. the sense of number which is implicit in the notion of an arbitrary finite sequence and iteration is one sense of number and finitude. Another sense, of older origin, is connected with practices of counting concrete things, and a third sense is linked up with the immediate intuitive experience of multitudes of concrete things. Hilbert’s finitism is examined with respect to these differences, and it will be shown that there is a tendency to conflate the different senses of number and finitude, a tendency which has been a source of problems in the discussion of the foundations of mathematics and in the philosophy of logic and language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernays, P. (1930). Die Philosophie der Mathematik und die Hilbertsche Beweistheorie. Blätter für deutsche Philosophie, 4, 326–367. (References to the translation as “The Philosophy of mathematics and Hilbert’s proof theory”, in Mancosu (1998), pp. 234–265.)

  • Church A. (1956) Introduction to mathematical logic, I. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Corry L. et al (2006) The origin of Hilbert’s axiomatic method. In: Jürgen R. (ed.) The genesis of general relativity, Vol. 4, Theories of gravitation in the Twilight of classical physics: The promise of mathematics and the dream of a unified theory. Springer, New York, pp 139–236

    Google Scholar 

  • Curry H. B. (1950) Language, metalanguage, and formal system. The Philosophical Review 59: 346–353

    Article  Google Scholar 

  • Detlefsen M. (1986) Hilbert’s program, An essay on mathematical instrumentalism. Reidel, Dordrecht

    Google Scholar 

  • Einstein A. (1973) Ideas and opinions. Souvenir Press, London

    Google Scholar 

  • Greiffenhagen C., Sharrock W. (2006) Mathematical relativism: Logic, grammar, and arithmetic in cultural comparison. Journal for the Theory of Social Behaviour 36: 97–117

    Article  Google Scholar 

  • Hilbert, D. (1922). Neubegründung der Mathematik. Erste Mitteilung, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 1, pp. 157–177. (References to the English translation as “The new grounding of mathematics, first report”, in Mancosu (1998), pp. 198–214.)

  • Hilbert, D. (1923/1966). The logical foundations of mathematics. In W. Ewald (Ed.), From Kant to Hilbert. Readings in the foundations of mathematics (pp. 1134–1148). Oxford: Oxford University Press.

  • Hilbert, D. (1925/1926). Über das Unendliche, Mathematische Annalen, 95, 161–190. (The article was given as a lecture in 1925. References to the English translation as “On the infinite”, in J. Van Heijenoort, Ed., 1976, From Frege to Gödel: A source-book in mathematical logic, 1879–1931, Cambridge: Harvard University Press.)

  • Hilbert, D. (1927/1928). Die Grundlagen der Mathematik, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 6, pp. 65–85. (The article was given as a lecture in 1927. References to the translation as “The Foundations of Mathematics”, in J. Van Heijenoort, Ed., 1976, From Frege to Gödel: A source-book in mathematical logic, 1879–1931, Cambridge: Harvard University Press.)

  • Hilbert, D. (1931). Die Grundlegung der elementaren Zahlentheorie, Mathematische Annalen, 104, 485–494. (Translated as “The grounding of elementary number theory”, in From Brouwer to Hilbert. The debate on the foundations of mathematics in the 1920’s, pp. 266–273, by P. Mancosu, Ed., 1998, Oxford: Oxford University Press.)

  • Hilbert, D., & Bernays, P. (1968). Grundlagen der Mathematik (Vol. I, 2nd ed.). Berlin: Springer. (First ed. published in 1934.)

  • Husserl, E. (1970a). Philosophie der Arithmetik. Mit ergänzenden Texten. (1890–1901). In L. Eley (Ed.), Husserliana Vol. XII. The Hague: Martinus Nijhoff.

  • Husserl, E. (1970b). The crisis of the European sciences and transcendental phenomenology (D. Carr, Trans.). Evanston: Northwestern University Press.

  • Kant, I. (1973). Critique of pure reason (N. K. Smith, English Trans.). London: MacMillan.

  • Kitcher P. (1976) Hilbert’s epistemology. Philosophy of Science 43(1): 99–115

    Article  Google Scholar 

  • Kleene S. C. (1967) Introduction to metamathematics. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Lynch M.E., Mart A. (2009) Counting things and people: The practices and politics of counting. Social Problems 59(2): 243–266

    Google Scholar 

  • Mancosu P. (1998) From Brouwer to Hilbert. The debate on the foundations of mathematics in the 1920’s. Oxford University Press, Oxford

    Google Scholar 

  • Marion M. (1998) Wittgenstein, finitism, and the foundations of mathematics. Clarendon Press, Oxford

    Google Scholar 

  • Majer, U. (1993). Different forms of finitism. In J. Czermak (Ed.), Proceedings of the 15th international Wittgenstein symposium (pp. 185–194). Wienna: Verlag Hölder-Pichler.

  • Majer U. (2007) Husserl and Hilbert on completeness, A neglected chapter in early twentieth century foundation of mathematics. Synthese 110: 37–56

    Article  Google Scholar 

  • Mehrtens H. (1990) Moderne—Sprache—Mathematik: Eine Geschichte des Streits um die Grundlagen der Disziplin und des Subjekts formaler Systeme. Suhrkamp, Frankfurt

    Google Scholar 

  • Miller J. P. (1982) Numbers in presence and absence: A study of Husserl’s philosophy of mathematics. Martinus Nijhoff Publishers, The Hague

    Book  Google Scholar 

  • Mühlhölzer F. (2005) “A mathematical proof must be surveryable”—What Wittgenstein meant by this and what it implies. Grazer Philosophische Studien 71: 57–86

    Google Scholar 

  • Mühlhölzer, F. (2006). Mathematics and the Lifeworld. Paper presented at the Workshop “Towards a new epistemology of mathematics”, September 14–16, 2006, organized by B. Bult, B. Löwe, & T. Müller, Freie Universität Berlin.

  • Müller A. (1923) Über Zahlen als Zeichen. Mathematische Annalen 90: 150–159

    Article  Google Scholar 

  • Parsons C. (1998) Finitism and intuitive knowledge. In: Schirn M. (ed.) The philosophy of mathematics today. Clarendon Press, Oxford, pp 249–270

    Google Scholar 

  • Reid C. (1970) Hilbert. Springer, New York

    Google Scholar 

  • Shoenfield J. R. (1967) Mathematical logic. Addison-Wesley, London

    Google Scholar 

  • Sieg W. (1999) Hilbert’s programs: 1917–1922. The Bulletin of Symbolic Logic 5: 1–43

    Article  Google Scholar 

  • Sieg W. et al (2009) Beyond Hilbert’s Reach. In: Lindström S. (ed.) Logicism, intuitionism, and formalism, Synthese Library 341. Springer, Dordrecht, pp 449–483

    Chapter  Google Scholar 

  • Simpson S. G. (1988) Partial realizations of Hilbert’s program. Journal of Symbolic Logic 53: 349–363

    Article  Google Scholar 

  • Tait W. W. (1981) Finitism. The Journal of Philosophy 78: 524–546

    Article  Google Scholar 

  • Tait, W. W. (2002). Remarks on finitism. In W. Sieg, R. Sommer, & C. Talcott (Eds.), Reflections on the foundations of mathematics: Essays in honour of Solomon Feferman (Vol. 15, pp. 407–416). Urbana: Association for Symbolic Logic, Lecture notes in Logic.

  • Van Dantzig, D. (1955–1956). Is 10^1010 A Finite Number? Dialectica, 9, 272–277.

    Google Scholar 

  • Weyl, H. (1927/1976). Comments on Hilbert’s second lecture on the foundations of mathematics. In J. van Heijenoort (Ed.), From Frege to Gödel: A source-book in mathematical logic, 1879–1931 (pp. 480–484). Cambridge: Harvard University Press.

  • Wittgenstein, L. (1969). Tractatus Logico-Philosophicus [TLP] (D. F. Pears & B. F. McGuinnes, English Trans.). London: Routledge & Kegan Paul.

  • Yessenin-Volpin, A. S. (1970). The ultra-intuitionistic criticism and the anti-traditional program for foundations of mathematics. In A. Kino, J. Myhill, & R. E. Vesley (Eds.), Intuitionism and proof theory: Proceedings of the summer conference at Buffalo, NY, 1968 (pp. 3–45). Amsterdam: North Holland.

  • Zach R. (2006) Hilbert’s program then and now. In: Jacquette D. (ed.) Philosophy of logic, handbook of the philosophy of science. Elsevier, Amsterdam, pp 411–447

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Stenlund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenlund, S. Different senses of finitude: An inquiry into Hilbert’s finitism. Synthese 185, 335–363 (2012). https://doi.org/10.1007/s11229-010-9823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-010-9823-2

Keywords

Navigation