Skip to main content
Log in

First-principles insights on tuning band structure and transport property of GaN nanotube

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The band structure and transport properties of GaN nanotube are explored using density functional theory with substitution impurity and defect in GaN nanostructure. The band structure varies with oxygen substitution and defect in the GaN nanotube. The density of states spectrum provides the insight for the localization of charges in different energy intervals. The electron density is found to be more in nitrogen site than in gallium site across GaN nanotube. The substitution impurity has the influence over electron density along GaN nanotube. The transport properties are discussed in terms of transmission spectrum. The orbital delocalization gives rise to peak maximum in different energy intervals. The substitution effect of oxygen and defect in the structure has much impact in the transmission along the valence band and conduction band. The finding of present work gives the insight to tailor the band structure and enhance the transport property of GaN nanotube with substitution impurity and defect structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Drygas M, Czosnek C, Paine RT, Janik JF (2005) Mater Res Bull 40:1136

    Article  CAS  Google Scholar 

  2. Zouhbi AA, Al-Din NS (2008) Opt Rev 15:251

    Article  Google Scholar 

  3. Al-Douri Y (2013) Proc. Eng 53:400

    Article  CAS  Google Scholar 

  4. Debernardi A (2006) Superlattices Microstruct 40:530

    Article  CAS  Google Scholar 

  5. Hsiao HL, Liu ZY, Lee PH (2009) Diam Relat Mater 18:537

    Article  CAS  Google Scholar 

  6. Chen GX, Zhang Y, Wang DD, Zhang JM, Xu KW (2011) Solid State Commun 151:139

    Article  CAS  Google Scholar 

  7. Hao S, Zhou G, Wu J, Duan W, Gu BL (2005) Chem Phys Lett 401:47

    Article  CAS  Google Scholar 

  8. Mohanbabu A, Anbuselvan N, Mohankumar N, Godwinraj D, Sarkar CK (2014) Solid-State Electron 91:44

    Article  CAS  Google Scholar 

  9. Kioseoglou J, Kalesaki E, Dimitrakopulos GP, Kehagias T, Komninou P, Karakostas T (2012) Appl Surf Sci 260:23

    Article  CAS  Google Scholar 

  10. Chisholm JA, Bristowe PD (2001) Comput Mater Sci 22:73

    Article  CAS  Google Scholar 

  11. Wang L, Shi L, Li Q, Si L, Zhu Y, Qian Y (2012) Mater Res Bull 47:3920

    Article  CAS  Google Scholar 

  12. Kench PJ, Shannon JM, Shao G, Trskiropoulos P, Silva SRP (2001) Nucl Instrum Methods Phys Res Sect B 175–177:678

    Article  Google Scholar 

  13. Srivastava V, Sureshkumar V, Puviarasu P, Thangaraju J, Thangavel R, Kumar J (2005) J Cryst Growth 275:2367

    Article  Google Scholar 

  14. Ivantsov VA, Sukhoveev VA, Nikolaev VI, Nikitina IP, Dmitriev VA (1997) Phys Solid State 39:763

    Article  Google Scholar 

  15. Roy RK, Pal AK (2005) Mater Lett 59:2204

    Article  CAS  Google Scholar 

  16. Roohi H, Bagheri S (2013) Struct Chem 24:409

    Article  CAS  Google Scholar 

  17. Farmanzadeh D, Ghazanfary S (2014) Struct Chem 25:293

    Article  CAS  Google Scholar 

  18. Farmanzadeh D, Ghazanfary S (2009) Struct Chem 20:709

    Article  CAS  Google Scholar 

  19. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2013) Chem Phys Lett 565:69

    Article  CAS  Google Scholar 

  20. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) Struct Chem 23:653

    Article  CAS  Google Scholar 

  21. Moradi M, Naderi N (2014) Struct Chem 25:1289

    Article  CAS  Google Scholar 

  22. Ahmadi A, Kamfiroozi M, Beheshtian J, Hadipour NL (2011) Struct Chem 22:1261

    Article  CAS  Google Scholar 

  23. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Portal DS (2002) J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  24. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  26. Chandiramouli R, Sriram S (2014) Mol Phys. doi:10.1080/00268976.2013.875230

    Google Scholar 

  27. Srivastava A, Tyagi N, Singh RK (2011) Mater Chem Phys 127:489

    Article  CAS  Google Scholar 

  28. Chandiramouli R, Sriram S (2014) NANO 9:1450020

    Article  Google Scholar 

  29. Shokri A, Avaresi FG (2013) Opt Commun 304:143

    Article  CAS  Google Scholar 

  30. Jaiswal NK, Srivastava P (2012) Solid State Commun 152:1489

    Article  CAS  Google Scholar 

  31. Chandiramouli R, Sriram S (2014) J Inorg Organomet Polym. doi:10.1007/s10904-014-0041-0

    Google Scholar 

  32. Srivastava A, Tyagi N (2012) Mater Chem Phys 137:103

    Article  CAS  Google Scholar 

  33. Zhao XG, Tang Z, Hu WX (2013) Surf Sci 608:97

    Article  CAS  Google Scholar 

  34. Chandiramouli R, Sriram S (2014) Superlattices Microstruct 65:22

    Article  CAS  Google Scholar 

  35. Zhang Y, Wang FC, Zhao YP (2012) Comput Mater Sci 62:87

    Article  CAS  Google Scholar 

  36. Chandiramouli R (2014) Ceram Int 40:9211

    Article  CAS  Google Scholar 

  37. Fang C, Cui B, Xu Y, Ji G, Liu D, Xie S (2011) Phys Lett A 375:3618

    Article  CAS  Google Scholar 

  38. Chandiramouli R (2014) Struct Chem. doi:10.1007/s11224-014-0434-2

    Google Scholar 

  39. Zhao P, Liu DS (2013) Physica E 47:224

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandiramouli, R. First-principles insights on tuning band structure and transport property of GaN nanotube. Struct Chem 26, 375–382 (2015). https://doi.org/10.1007/s11224-014-0498-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0498-z

Keywords

Navigation