Skip to main content
Log in

Comparison of Line-of-Sight Magnetograms Taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We compare line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). The line-of-sight magnetic signal inferred from the calibrated MDI data is greater than that derived from the HMI data by a factor of 1.40. This factor varies somewhat with center-to-limb distance. An upper bound to the random noise for the 1′′ resolution HMI 720-second magnetograms is 6.3 Mx cm−2, and 10.2 Mx cm−2 for the 45-second magnetograms. Virtually no p-mode leakage is seen in the HMI magnetograms, but it is significant in the MDI magnetograms. 12-hour and 24-hour periodicities are detected in strong fields in the HMI magnetograms. The newly calibrated MDI full-disk magnetograms have been corrected for the zero-point offset and underestimation of the flux density. The noise is 26.4 Mx cm−2 for the MDI one-minute full-disk magnetograms and 16.2 Mx cm−2 for the five-minute full-disk magnetograms observed with four-arcsecond resolution. The variation of the noise over the Sun’s disk found in MDI magnetograms is likely due to the different optical distortions in the left- and right-circular analyzers, which allows the granulation and p-mode to leak in as noise. Saturation sometimes seen in sunspot umbrae in MDI magnetograms is caused by the low intensity and the limitation of the onboard computation. The noise in the HMI and MDI line-of-sight magnetic-field synoptic charts appears to be fairly uniform over the entire map. The noise is 2.3 Mx cm−2 for HMI charts and 5.0 Mx cm−2 for MDI charts. No evident periodicity is found in the HMI synoptic charts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

Download references

Acknowledgements

We wish to thank the large team who have made great contributions to this SDO mission for their hard work! We thank the anonymous referee for the suggestions and comments that helped improve the article. We appreciate very much the discussions with R. Ulrich, which led to further examination of the pixel-by-pixel comparison between MDI and HMI magnetograms. This work was supported by NASA Contract NAS5-02139 (HMI) to Stanford University. The data have been used by courtesy of NASA/SDO and the HMI science team. SOHO is a project of international cooperation between ESA and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Hoeksema, J.T., Scherrer, P.H. et al. Comparison of Line-of-Sight Magnetograms Taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager . Sol Phys 279, 295–316 (2012). https://doi.org/10.1007/s11207-012-9976-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-9976-x

Keywords

Navigation