Skip to main content

Advertisement

Log in

Using ground gravity to improve ice mass change estimation from GOCE gravity gradients in mid-west Greenland

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Vertical gravity gradient anomalies from the Gravity and steady-state Ocean Circulation Explorer (GOCE) DIR-3 model have been used to determine gravity anomalies in mid-west Greenland by using Least-Squares Collocation (LSC) and the Reduced Point Mass (RPM) method. The two methods give nearly identical results. However, compared to LSC, the RPM method needs less computational time as the number of equations to be solved in LSC equals the number of observations. The advantage of the LSC, however, is the acquired error estimates. The observation periods are winter 2009 and summer 2012. In order to enhance the accuracy of the calculated gravity anomalies, ground gravity data from West Greenland is used over locations where the gravity change resulting from ice mass changes is negligible, i.e. over solid rock. In the period considered, the gravity anomaly change due to changes in ice mass varies from −5 mGal to 4 mGal. It is negative over the outlet glacier Jacobshavn Isbræ, where the mass loss corresponds to a gravity change of approximately −4 mGal. When using only GOCE vertical gravity gradients, the error estimates range from 5 mGal at the coast to 17 mGal over the ice sheet. Introducing the ground gravity data from West Greenland in the prediction reduces the errors to range from 2 to 10 mGal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barletta V.R., Sørensen L.S. and Forsberg R., 2013. Scatter of mass changes estimates at basin scale for Greenland and Antarctica. The Cryosphere, 7, 1411–1432, DOI: 10.5194/tc-7-1411-2013.

    Article  Google Scholar 

  • Bouman J., Fuchs M., Ivins E., van der Wal W., Schrama E., Visser P. and Horwath M., 2014. Antarctic outlet glacier mass change resolved at basin scale from satellite gravity gradiometry. Geophys. Res. Lett., 41, 5919–5926, DOI: 10.1002/2014GL060637.

    Article  Google Scholar 

  • Bouman J., Ripens S., Gruber T., Koop R., Schrama R., Visser P., Tscherning C.C. and Veicherts M., 2008. Preprocessing of gravity gradients at the GOCE High-level processing facility. J. Geodesy, 83, 659–678, DOI: 10.1007/s00190-008-0279-9.

    Article  Google Scholar 

  • Brozena J., Chalona M., Forsberg R. and Mader G., 1992. The Greenland Aerogeophysical Project. EOS Trans. AGU, DOI: I10.1007/978-1-4613-9255-2_19.

    Google Scholar 

  • Bruinsma S.L., Marty J.C., Balmino G., Biancale R., Fö rste C., Abrikosov O. and Neumeyer H., 2010. GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6.

    Google Scholar 

  • Herceg M., Tscherning C.C. and Levinsen J.F., 2014. Sensitivity of GOCE gradients on Greenland mass variation and changes in ice topography. J. Geod. Sci., 4, 8–18., DOI: 10.2478/jogs- 2014-0001.

    Google Scholar 

  • Herceg M., 2012. GOCE Data for Ocean Modelling. Ph.D. Thesis. Department of Geodesy, Technical University of Denmark, Copenhagen, Denmark

    Google Scholar 

  • Herceg M., Knudsen P. and Tscherning C.C., 2014. GOCE data for local geoid enhancement. In: Marti U. (Ed.), Gravity, Geoid and Height Systems. International Association of Geodesy Symposia 141, Springer-Verlag, Heidelberg, Germany, 133–142.

    Google Scholar 

  • Howat I.M., Ahn Y., Joughin I., Van den Broeke M.R., Lenaerts J.T.M. and Smith B., 2011. Mass balance of Greenland’s three largest outlet glaciers, 2000-2010. Geophys. Res. Lett., 38, L12501, DOI: 10.1029/2011GL047565.

    Article  Google Scholar 

  • Johannesen J.A., Balmino G., Le Provost C., Rummel R., Sabadini R., Suenkel H., Tscherning C.C., Visser P., Woodworth P., Huges C.H., Le Grand P., Sneeuw N., Perosanz F., Aguirre-Martinez M., Rebhan H. and Drinkwater M., 2003. The European gravity field and steadystate ocean circulation explorer mission: impact on geophysics. Surv. Geophys., 24, 339–386, DOI: 10.1023/B:GEOP.0000004264.04667.5e.

    Article  Google Scholar 

  • Kejlsø E., 1958. Gravity Measurements in Western Greenland 1950-1952. Geodaetisk Instituts Skrifter, 3. RK., Vol. 27, Geodetic Institute, Copenhagen, Denmark, 69 pp.

    Google Scholar 

  • Krarup T., 1969. A Contribution to the Mathematical Foundation of Physical Geodesy. Meddelelse no. 44, Geodetic Institute, Copenhagen, Denmark.

  • Levinsen J.F., Howat I.M. and Tscherning C.C., 2013. Improving maps of ice sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data. J. Glaciol., 59, 525–532, DOI: 10.3189/2013JoG12J114.

    Google Scholar 

  • Luthcke S.B., Sabaka T.J., Loomis B.D., Arendt A.A., McCarthy J.J. and Camp J., 2013. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59, 613–631, DOI: 10.3189/2013JoG12J147.

    Article  Google Scholar 

  • Moritz, H., 1980. Advanced Physical Geodesy. 1st Edition. Wichmann, Karlsruhe, Germany.

    Google Scholar 

  • Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.-D, Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansó F. and Tscherning, C.C., 2011. First GOCE gravity field models derived by three different approaches. J. Geodesy, 85, 819–843, DOI: 10.1007/s00190-011-0467-x.

    Article  Google Scholar 

  • Rowlands D.D., Luthcke S.B., Klosko S.M., Lemoine F.G.R., Chinn D.S., McCarthy J.J., Cox C.M. and Anderson O.B., 2005. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett., 32, L04310, DOI: 10.1029/2004GL021908.

    Article  Google Scholar 

  • Shepherd A., Ivins E.R., Geruo A, Barletta V.R., Bentley M.J., Bettadpur S., Briggs K.H., Bromwich D.H., Forsberg R., Galin N., Horwath M., Jacobs S., Joughin I., King M.A., Lenaerts J.T.M., Li J., Ligtenberg S.R.M., Luckman A., Luthcke S.B., McMillan M., Meister R., Milne G., Mouginot J., Muir A., Nicolas J.P., Paden J., Payne A.J., Pritchard H., Rignot E., Rott H., Sø rensen L.S., Scambos T.A., Scheuchl B., Schrama E.J.O., Smith B., Sundal A.V., van Angelen J.H., van de Berg W.J., van den Broeke M.R., Vaughan D.G., Velicogna I., Wahr J., Whitehouse P.L., Wingham D.J., Yi D., Young D. and Zwally H.J., 2012. A reconciled estimate of ice-sheet mass balance. Science, 338, 1183–1189. DOI: 10.1126/science.1228102.

    Article  Google Scholar 

  • Svejgaard B., 1959. Gravity Measurements in Western Greenland 1953-1955. Geodaetisk Instituts Skrifter, 3. RK., Vol. 32, Geodetic Institute, Copenhagen, Denmark.

  • Sørensen S.L., 2010. Changes of the Greenland Ice Sheet Derived from ICESat and GRACE Data. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark.

    Google Scholar 

  • Tapley D.B., Bettadpur S., Watkin M. and Reigber C., 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, DOI: 10.1029/2004GL019920.

    Article  Google Scholar 

  • Tscherning C.C., 1974. A FORTRAN IVProgram for the Determination of the Anomalous Potential Using Stepwise Least Squares Collocation. Report 212. Department of Geodetic Science, The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Tscherning C.C., 1976. Covariance Expressions for Second and Lower Order Derivatives of the Anomalous Potential. Report 225. Department of Geodetic Science, The Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Tscherning C.C., 2015. Developments in the implementation and use of Least-Squares Collocation. In: International Association of Geodesy Symposia 143, Springer-Verlag, Heidelberg, Germany, DOI: 10.1007/1345_2015_54 (in print).

    Google Scholar 

  • Tscherning C.C. and Arabelos, D. 2011. Gravity anomaly and gradient recovery from GOCE gradient data using LSC and comparisons with known ground data. Proceedings 4th International GOCE User Workshop, 31 March - April 1, 2011. ESA Publications Division, Nordwijk, The Netherlands, SP-696.

    Google Scholar 

  • Tscherning C.C., Forsberg R. and Knudsen, P., 1992. GRAVSOFT - A System for Geodetic Gravity Field Modelling. In: Holota P. and Vermeer M. (Eds), First Continental Workshop on the Geoid in Europe: Towards a Precise Pan-European Reference Geoid for the Nineties, Prague, May 11-14, 1992. Research Institute of Geodesy, Topography and Cartography, Prague, Czech Republic, 327–334.

    Google Scholar 

  • Tscherning C.C., Rubek F. and Forsberg R., 1998. Combining airborne and ground gravity using collocation. In: Forsberg R., Feissl M. and Dietrich R. (Eds), Geodesy on the Move. International Association of Geodesy Symposia 119, Springer-Verlag, Heidelberg, Germany 18–23, DOI: 10.1007/978-3-642-72245-5_3.

    Chapter  Google Scholar 

  • Tscherning C.C. and Veicherts M., 2007. Optimization of gradient prediction. http://cct.gfy.ku.dk/publ_cct/cct1912.pdf

    Google Scholar 

  • Wang W., Li J. and Zwally, H.J., 2012. Dynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet. J. tGlaciol., 58, 734–740, DOI: 10.3189/2012JoG11J187.

    Article  Google Scholar 

  • Wouters B., Chambers D. and Schrama E.J.O., 2008. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35, L20501, DOI: 10.1029/2008GL034816.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matija Herceg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tscherning, C.C., Herceg, M. Using ground gravity to improve ice mass change estimation from GOCE gravity gradients in mid-west Greenland. Stud Geophys Geod 60, 56–68 (2016). https://doi.org/10.1007/s11200-015-0508-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-0508-7

Keywords

Navigation