Skip to main content
Log in

Disjointness and order projections in the vector lattices of abstract Uryson operators

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Projections onto several special subsets in the Dedekind complete vector lattice of orthogonally additive, order bounded (called abstract Uryson) operators between two vector lattices E and F are considered and some new formulas are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1.  \((C_{1})\) and \((C_{2})\) are called the Carathéodory conditions.

  2.  An element \(u\in F_+\) is a weak order unit if \(\{u\}^{\bot \bot }=F\), i.e. except 0 there are no elements in F which are disjoint to u.

  3.  A weak order unit we need for applying this theorem is \(u+v\), where u, as was already mentioned, is a weak order unit in \(\{Sx+Tx\}^{\bot \bot }\) and v is some weak order unit in \(\{Sx+Tx\}^\bot \).

  4.  For example, \(y=x\) and arbitrary \(\rho \in \mathfrak {P}(F)\).

  5.  In both cases without touching the term \(\varepsilon nS_0x\).

  6.  By using the relations \(\rho \circ \rho =\rho \) and \(\rho \circ \rho ^\bot =0\).

  7.  For \(S\in \mathcal {U}_{+}(E,F)\) the projections onto the bands \(\{S\}^{\bot \bot }\) and \(\{S\}^\bot \) are denoted by \(\pi _S\) and \(\pi _S^\bot \), respectively.

References

  1. Abasov, N., Pliev, M.: Order properties of the space of dominated Uryson operators. Int. J. Math. Anal. 9(45), 2211–2219 (2015)

    Google Scholar 

  2. Abramovich, Yu.A., Aliprantis, C.D.: Invitation to operator theory. In: Graduate Studies in Mathematics, vol. 50. American Mathematical Society, Providence, RI (2002)

  3. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006)

    Book  MATH  Google Scholar 

  4. Aliprantis, C.D., Burkinshaw, O.: The components of a positive operator. Math. Z. 184(2), 245–257 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Amor, M., Pliev, M.A.: Laterally continuous part of an abstract Uryson operator. Int. J. Math. Anal. 7(58), 2853–2860 (2013)

  6. Getoeva, A., Pliev, M.: Domination problem for orthgonally additive operators in lattice-normed spaces. Int. J. Math. Anal. 9(27), 1341–1352 (2015)

    Google Scholar 

  7. Gumenchuk, A.V., Pliev, M.A., Popov, M.M.: Extensions of orthogonally additive operators. Mat. Stud. 41(2), 214–219 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Kolesnikov, E.V.: Decomposition of a positive operator. Sib. Math. J. 30(5), 77–79 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Kolesnikov, E.V.: Several order projections generated by ideals of a vector lattice. Sib. Math. J. 36(6), 1342–1349 (1995)

    Article  MathSciNet  Google Scholar 

  10. Krasnosel’skij, M.A., Zabrejko, P.P., Pustil’nikov, E.I., Sobolevskij, P.E.: Integral Operators in Spaces of Summable Functions. Noordhoff, Leiden (1976)

    Book  Google Scholar 

  11. Kusraev, A.G.: Dominated Operators. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  12. Kusraev, A.G.,  Kutateladze, S.S.: Boolean Valued Analysis. Kluwer Academic Publishers, Dordrecht (1999)

  13. Kusraev, A.G., Pliev, M.A.: Orthogonally additive operators on lattice-normed spaces. Vladikavkaz Math. J. 3, 33–43 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Kusraev, A.G., Pliev, M.A.: Weak integral representation of the dominated orthogonally additive operators. Vladikavkaz Math. J. 4, 22–39 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Mazón, J.M., Segura de León, S.: Order bounded orthogonally additive operators. Rev. Roum. Math. Pures Appl. 35(4), 329–353 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Mazón, J.M., Segura de León, S.: Uryson operators. Rev. Roum. Math. Pures Appl. 35(5), 431–449 (1990)

    MATH  Google Scholar 

  17. de Pagter, B.: The components of a positive operator. Indag. Math. 48(2), 229–241 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pliev, M.A.: Uryson operators on the spaces with mixed norm. Vladikavkaz Math. J. 3, 47–57 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Pliev, M.A.: Projection of the positive Uryson operator. Vladikavkaz Math. J. 4, 46–51 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Pliev, M.A.: Order projections in the space of Uryson operators. Vladikavkaz Math. J. 4, 38–44 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Pliev, M.A.: The shadow of bilinear regular operator. Vladikavkaz Math. J. 3, 40–45 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Pliev, M., Popov, M.: Narrow orthogonally additive operators. Positivity 18(4), 641–667 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pliev, M., Popov, M.: Dominated Uryson operators. Int. J. Math. Anal. 8(22), 1051–1059 (2014)

    Google Scholar 

  24. Weber, M.R.: Finite Elements in Vector Lattices. W. de Gruyter GmbH, Berlin (2014)

    Book  MATH  Google Scholar 

  25. Zaanen, A.G.: Riesz Spaces II. North Holland, Amsterdam (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Weber.

Additional information

M. A. Pliev was supported by the Russian Foundation of Basic Research, the Grant Number 14-01-91339.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pliev, M.A., Weber, M.R. Disjointness and order projections in the vector lattices of abstract Uryson operators. Positivity 20, 695–707 (2016). https://doi.org/10.1007/s11117-015-0381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-015-0381-1

Keywords

Mathematics Subject Classification

Navigation