Skip to main content
Log in

Can the defensive mutualism between grasses and fungal endophytes protect non-symbiotic neighbours from soil pathogens?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

It is proposed that Epichloë endophytes have a role protecting host grasses against pathogens. However, it is unclear whether this protection is extended to other non-symbiotic plants. Here we explored the effect of the asexual fungal symbiont, Epichloë occultans, on the interaction between Lolium multiflorum host plants and soil pathogens, and its potential positive side-effect on neighbouring plants.

Methods

We conducted two microcosm experiments to assess the endophyte effect on seedling establishment of the host grass and other non-symbiotic grasses in the presence of soil pathogens. With an in-vitro experiment, we tested whether the endophyte inhibits, during seed germination, the growth of these pathogens.

Results

Independently of pathogen identity, the endophyte improved host establishment (6 %). The endophyte also enhanced the establishment of the neighbouring grass Bromus catharticus (≈20 %) only in soil with Rhizoctonia solani. The endophyte in seed reduced the growth (≈20 %) of two out of four pathogens (Fusarium acuminatum and R. solani).

Conclusions

We conclude that asexual endophytes could protect host grasses against pathogens but most importantly, that they can have protective effects beyond their hosts. Since effects depended on pathogen and plant identity, more experiments are needed in order understand the ecological meaning of these positive side-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrios GN (1997) Plant pathology vol 635. Academic, San Diego

    Google Scholar 

  • Bacon CW, White JFJ (1994) Stains, media, and procedures for analyzing endophytes. Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton

    Google Scholar 

  • Bacon CW, Richardson MD, White JF Jr (1997) Modification and uses of endophyte-enhanced turfgrasses: a role for molecular technology. Crop Sci 37:1415–1425

    Article  Google Scholar 

  • Bourdôt G, Hurrell G (1992) Aspects of the ecology of Stipa neesiana Trin. & Rupr. seeds. N Z J Agric Res 35:101–108

    Article  Google Scholar 

  • Burdon JJ, Thrall PH (2009) Coevolution of plants and their pathogens in natural habitats. Science 324:755–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkart S, León RC, Conde M, Perelman S (2011) Plant species diversity in remnant grasslands on arable soils in the cropping Pampa. Plant Ecol 212:1009–1024. doi:10.1007/s11258-010-9881-z

    Article  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casas C, Omacini M, Montecchia MS, Correa OS (2011) Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 340:347–355

    Article  CAS  Google Scholar 

  • Chu-Chou M et al (1992) Suppression of mycorrhizal fungi in fescue by the acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637

    Article  Google Scholar 

  • Clarke BB, White JF Jr, Hurley RH, Torres MS, Sun S, Huff DR (2006) Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Dis 90:994–998

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Farr DF, Rossman AY (2014) Fungal databases

  • Ferrari L, Lopez C (2000) Germination conditions for Briza subaristata: pretreatments and temperature effects. Seed Sci Technol 28:631–639

    Google Scholar 

  • García Parisi PA, Casas C, Gundel PE, Omacini M (2012) Consequences of grazing on the vertical transmission of a fungal Neotyphodium symbiont in an annual grass population. Austral Ecol 37:620–628

    Article  Google Scholar 

  • García Parisi PA, Grimoldi AA, Omacini M (2014) Endophytic fungi of grasses protect other plants from aphid herbivory. Fungal Ecol 9:61–64. doi:10.1016/j.funeco.2014.01.004

    Article  Google Scholar 

  • Gundel PE, Batista WB, Texeira M, Martínez-Ghersa MA, Omacini M, Ghersa CM (2008) Neotyphodium endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency. Proc R Soc B Biol Sci 275:897–905

    Article  Google Scholar 

  • Gundel PE, Garibaldi LA, Tognetti PM, Aragón R, Ghersa CM, Omacini M (2009) Imperfect vertical transmission of the endophyte neotyphodium in exotic grasses in grasslands of the flooding pampa. Microb Ecol 57:740–748

    Article  PubMed  Google Scholar 

  • Gundel PE, Rudgers JA, Ghersa CM (2011) Incorporating the process of vertical transmission into understanding of host-symbiont dynamics. Oikos 120:1121–1128

    Article  Google Scholar 

  • Gundel P, Helander M, Casas C, Hamilton C, Faeth S, Saikkonen K (2012a) Neotyphodium fungal endophyte in tall fescue (Schedonorus phoenix): a comparison of three Northern European wild populations and the cultivar Kentuky-31. Fungal Divers 1–10. doi:10.1007/s13225-012-0173-x

  • Gundel P, Martínez-Ghersa M, Omacini M, Cuyeu R, Pagano E, Ríos R, Ghersa C (2012b) Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evol Appl. doi:10.1111/j.1752-4571.2012.00261.x

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Justus M, Witte L, Hartmann T (1997) Levels and tissue distribution of loline alkaloids in endophyte-infected Festuca pratensis. Phytochemistry 44:51–57

    Article  CAS  Google Scholar 

  • Kaur H, Kaur R, Kaur S, Baldwin IT, Inderjit (2009) Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS One 4

  • Kothamasi D, Toby Kiers E, van der Heijden MGA (2009) Mutualisms and community organization. Community ecology. Oxford University Press, Oxford. doi:10.1093/acprof:oso/9780199228973.003.0014

    Google Scholar 

  • Larimer AL, Bever JD, Clay K (2010) The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51:139–148

    Article  Google Scholar 

  • Leuchtmann A, bacon cW, Schardl CL, White JF, Tadych M (2014) Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia. doi:10.3852/13-251

  • Lichtenzveig J, Anderson JP, Thomas G, Oliver RP, Singh KB (2006) Inoculation and growth with soil-borne pathogenic fungi. In: Mathesius U, Journet EP, Summer LW (eds) The Medicago truncatula handbook. Noble Foundation, USA

    Google Scholar 

  • Ma M, Christensen M, Nan Z (2014) Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. Eur J Plant Pathol 1–13. doi:10.1007/s10658-014-0563-x

  • Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320

    Article  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (1998) Evidence for chemical changes on the root surface of fall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant Soil 205:1–12

    Article  CAS  Google Scholar 

  • Matthews JW, Clay K (2001) Influence of fungal endophyte infection on plant-soil feedback and community interactions. Ecology 82:500–509

    Google Scholar 

  • Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467

    Article  CAS  PubMed  Google Scholar 

  • Novas MV, Iannone LJ, Godeas AM, Scervino JM (2011) Evidence for leaf endophyte regulation of root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi. Symbiosis 55:19–28

    Article  Google Scholar 

  • Omacini M, Chaneton EJ, León RJC, Batista WB (1995) Old-field successional dynamics on the Inland Pampa, Argentina. J Veg Sci 6:309–316. doi:10.2307/3236229

    Article  Google Scholar 

  • Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  • Omacini M, Chaneton EJ, Bush L, Ghersa CM (2009) A fungal endosymbiont affects host plant recruitment through seed- and litter-mediated mechanisms. Funct Ecol 23:1148–1156

    Article  Google Scholar 

  • Omacini M, Semmartin M, Pérez LI, Gundel PE (2012) Grass-endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol 61:273–279

    Article  Google Scholar 

  • Pańka D, West CP, Guerber CA, Richardson MD (2013) Susceptibility of tall fescue to Rhizoctonia zeae infection as affected by endophyte symbiosis. Ann Appl Biol 163:257–268

    Article  Google Scholar 

  • Perelman SB, Burkart SE, León RJC (2003) The role of a native tussock grass (Paspalum quadrifarium Lam.) in structuring plant communities in the Flooding Pampa grasslands, Argentina. Biodivers Conserv 12:225–238. doi:10.1023/a:1021948723714

    Article  Google Scholar 

  • Pérez LI, Gundel PE, Ghersa CM, Omacini M (2013) Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecol 6:379–386. doi:10.1016/j.funeco.2013.06.006

    Article  Google Scholar 

  • Pirhofer-Walzl K, Rasmussen J, Høgh-Jensen H, Eriksen J, Søegaard K (2012) Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 350:71–84

    Article  CAS  Google Scholar 

  • Rasmussen S et al (2007) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol 173:787–797

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Parsons AJ, Popay A, Xue H, Newman JA (2008) Plant-endophyte-herbivore interactions: more than just alkaloids? Plant Signal Behav 3:974–977

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles: Tansley review. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rúa MA, McCulley RL, Mitchell CE (2013) Fungal endophyte infection and host genetic background jointly modulate host response to an aphid-transmitted viral pathogen. J Ecol 101:1007–1018

    Article  Google Scholar 

  • Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124

    Article  Google Scholar 

  • Rudgers JA, Orr S (2009) Non-native grass alters growth of native tree species via leaf and soil microbes. J Ecol 97:247–255

    Article  Google Scholar 

  • Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia 144:463–471

    Article  PubMed  Google Scholar 

  • Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88:18–25

    Article  PubMed  Google Scholar 

  • Rudgers JA, Fischer S, Clay K (2010) Managing plant symbiosis: fungal endophyte genotype alters plant community composition. J Appl Ecol 47:468–477

    Article  Google Scholar 

  • Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Environ 165:1–5

    Article  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. vol 55

  • Semmartin M, Omacini M, Gundel PE, Hernández-Agramonte IM (2015) Broad-scale variation of fungal-endophyte incidence in temperate grasses. J Ecol 103:184–190. doi:10.1111/1365-2745.12343

    Article  Google Scholar 

  • Soriano A (1992) Río de la Plata grasslands. Natural grasslands. Introduction and Western Hemisphere. Ecosystems of the world 8A. Elsevier, Amsterdam

    Google Scholar 

  • Steinebrunner F, Schiestl FP, Leuchtmann A (2008) Ecological role of volatiles produced by Epichloë: differences in antifungal toxicity. FEMS Microbiol Ecol 64:307–316

    Article  CAS  PubMed  Google Scholar 

  • TePaske MR, Powell RG, Clement SL (1993) Analyses of selected endophyte-infected grasses for the presence of loline-type and ergot-type alkaloids. J Agric Food Chem 41:2299–2303. doi:10.1021/jf00036a015

    Article  CAS  Google Scholar 

  • Tognetti P, Chaneton E (2012) Invasive exotic grasses and seed arrival limit native species establishment in an old-field grassland succession. Biol Invasions 14:2531–2544. doi:10.1007/s10530-012-0249-2

    Article  Google Scholar 

  • Tognetti PM, Chaneton EJ, Omacini M, Trebino HJ, León RJ (2010) Exotic vs. native plant dominance over 20 years of old-field succession on set-aside farmland in Argentina. Biol Conserv 143:2494–2503

    Article  Google Scholar 

  • Uchitel A, Omacini M, Chaneton EJ (2011) Inherited fungal symbionts enhance establishment of an invasive annual grass across successional habitats. Oecologia 165:465–475

    Article  PubMed  Google Scholar 

  • Van Der Heijden MGA, Bakker R, Verwaal J, Scheublin TR, Rutten M, Van Logtestijn R, Staehelin C (2006a) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187

    Article  PubMed  Google Scholar 

  • Van Der Heijden MGA et al (2006b) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • Vázquez-De-Aldana BR, Romo M, García-Ciudad A, Petisco C, García-Criado B (2011) Infection with the fungal endophyte Epichlö festucae may alter the allelopathic potential of red fescue. Ann Appl Biol 159:281–290

    Article  Google Scholar 

  • Vázquez-de-Aldana BR, Zabalgogeazcoa I, García-Ciudad A, García-Criado B (2013) An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant Soil 362:201–213. doi:10.1016/j.funeco.2011.05.006

    Article  Google Scholar 

  • Wäli PR, Helander M, Nissinen O, Saikkonen K (2006) Susceptibility of endophyte-infected grasses to winter pathogens (snow molds). Can J Bot 84:1043–1051

    Article  Google Scholar 

Download references

Acknowledgments

Useful comments of two anonymous reviewers helped to improve previous versions of this manuscript. Gonzalo Irisarri, Florencia Spirito and María Semmartin provided useful comments on earlier versions of the manuscript. This work was funded by the University of Buenos Aires (UBA), the National Research Council (CONICET) and the National Scientific and Technological Promotion (FONCYT). L.I.P. holds a Research Scholarship from the National Research Council of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Pérez.

Additional information

Responsible Editor: Kari Saikkonen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Seedling establishment of Lolium multiflorum, Brisa subaristata and Stipa neesiana in soil seeded along with symbiotic (black bars) and non-symbiotic (white bars) L. multiflorum seeds and inoculated with sterile culture medium (control) or with pathogens [Fusarium graminearum (Fg) or Rhizoctonia solani (Rs)] (grey box). Values are means and SE (n = 10). (GIF 54 kb)

High resolution image

(EPS 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, L.I., Gundel, P.E. & Omacini, M. Can the defensive mutualism between grasses and fungal endophytes protect non-symbiotic neighbours from soil pathogens?. Plant Soil 405, 289–298 (2016). https://doi.org/10.1007/s11104-015-2568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2568-4

Keywords

Navigation