Skip to main content
Log in

Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Legume-associated nitrogen-fixing bacteria play a key role for plant performance and productivity in natural and agricultural ecosystems. Although this plant-microbe mutualism has been known for decades, studies on effects of rhizobia colonisation on legume-herbivore interactions are scarce. We hypothesized that additional nitrogen provided by rhizobia may increase plant resistance by nitrogen-based defense mechanisms. We studied this below-aboveground interaction using a system consisting of lima bean (Phaseolus lunatus L.), rhizobia, and the Mexican bean beetle (Epilachna varivestis Muls.) as an insect herbivore. We showed that the rhizobial symbiosis not only promotes plant growth but also improves plant defense and resistance against herbivores. Results of our study lead to the suggestion that nitrogen provided by rhizobia is allocated to the production of nitrogen-containing cyanogenic defense compounds, and thereby crucially determines the outcome of plant-herbivore interactions. Our study supports the view that the fitness benefit of root symbioses includes defence mechanisms and thus extends beyond the promotion of plant growth. Since the associations between legumes and nitrogen-fixing rhizobia are ubiquitous in terrestrial ecosystems, improved knowledge on rhizobia-mediated effects on plant traits―and the resulting effects on higher trophic levels―is important for better understanding of the role of these microbes for ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HCNp:

cyanogenic potential; amount of cyanogenic precursors in a given plant tissue

L:D:

light:dark period

References

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Ann Rev Entomol 47:817–844

    Article  CAS  Google Scholar 

  • Ball JP, Danell K, Sunesson P (2000) Response of a herbivore community to increased food quality and quantity: an experiment with nitrogen fertilizer in a boreal forest. J Appl Ecol 37:247–255

    Article  Google Scholar 

  • Ballhorn DJ, Lieberei R (2006) Oviposition choice of Mexican bean beetle (Epilachna varivestis) depends on host plants cyanogenic capacity. J Chem Ecol 32:1861–1865

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Ganzhorn JU, Lieberei R (2005) Plant cyanogenesis of Phaseolus lunatus and its relevance for herbivore-plant interaction: the importance of quantitative data. J Chem Ecol 31:1445–1473

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Heil M, Lieberei R (2006) Phenotypic plasticity of cyanogenesis in lima bean Phaseolus lunatus—activity and activation of β-glucosidase. J Chem Ecol 32:261–275

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Heil M, Pietrowski A, Lieberei R (2007) Quantitative effects of cyanogenesis on an adapted herbivore. J Chem Ecol 33:2195–2208

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Schiwy S, Jensen M, Heil M (2008) Quantitative variability of direct chemical defense in primary and secondary leaves of lima bean (Phaseolus lunatus) and consequences for a natural herbivore. J Chem Ecol 34:1298–1301

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Kautz S, Heil M, Hegeman AD (2009a) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS ONE 4:e5450

    Article  PubMed  Google Scholar 

  • Ballhorn DJ, Kautz S, Rakotoarivelo FP (2009b) Quantitative variability of cyanogenesis in Cathariostachys madagascariensis―the main food plant of bamboo lemurs in southeastern Madagascar. Am J Primatol 71:305–315

    Article  PubMed  Google Scholar 

  • Ballhorn DJ, Kautz S, Lieberei R (2010a) Comparing responses of generalist and specialist herbivores to various cyanogenic plant features. Entomol Exp Appl 134:245–259

    Article  CAS  Google Scholar 

  • Ballhorn DJ, Pietrowski A, Lieberei R (2010b) Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.). J Ecol 98:226–236

    Article  CAS  Google Scholar 

  • Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–218

    Article  PubMed  Google Scholar 

  • Bennett AE, Alers-Garcia J, Bever JD (2006) Synthesis: three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am Nat 167:141–152

    Article  PubMed  Google Scholar 

  • Bezemer TM, De Deyn GB, Bossinga TM, van Dam NM, Harvey JA, Van der Putten WH (2005) Soil community composition drives aboveground plant–herbivore–parasitoid interactions. Ecol Lett 8:652–661

    Article  Google Scholar 

  • Blauenfeldt J, Joshi PA, Gresshoff PM, Caetano-Anollés G (1994) Nodulation of white clover (Trifolium repens) in the absence of Rhizobium. Protoplasma 179:106–110

    Article  Google Scholar 

  • Bolter CJ, Dicke M, Van Loon JJA, Visser JH, Posthumus MA (1997) Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J Chem Ecol 23:1003–1023

    Article  CAS  Google Scholar 

  • Bonte D, De Roissart A, Vandegehuchte ML, Ballhorn DJ, Van Leeuwen T, de la Peña E (2010) Local adaptation of aboveground herbivores towards plant phenotypes induced by soil biota. PLoS ONE 5(6):e11174. doi:10.1371/journal.pone.0011174

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carney KM, Matson PA (2005) Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems 8:928–940

    Article  CAS  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Denno RF, McClure MS, Ott JR (1995) Interspecific interactions in phytophagous insects—competition reexamined and resurrected. Annu Rev Entomol 40:297–331

    Article  CAS  Google Scholar 

  • Eilmus S (2009) Diversität und Funktionen der mit der Ameisengattung Pseudomyrmex (Lund, 1831) assoziierten Bakterien. Universität Duisburg-Essen, Ph.D. dissertation, pp. 12–15 (in German)

  • Ettema C, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Article  Google Scholar 

  • Flanders RV (1984) Comparisons of bean varieties currently being used to culture the Mexican bean beetle (Coleoptera, Coccinellidae). Environ Entomol 13:995–999

    Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055

    Article  Google Scholar 

  • Ganzhorn JU (1992) Leaf chemistry and the biomass of folivorous primates in tropical forests. Test of a hypothesis. Oecologia 91:540–547

    Article  Google Scholar 

  • Gehring CA, Whitham TG (2002) Mycorrhizae-herbivore interactions: population and community consequences. In: van der Hejiden MAG, Sanders IR (eds) Mycorrhizal ecology. Springer, pp 295–320

  • Gleadow RM, Foley WJ, Woodrow IE (1998) Enhanced CO2 alters the relationship between photosynthesis and defense in cyanogenic Eucalyptus cladocalyx F. J Muell Plant Cell Environ 21:12–22

    Article  CAS  Google Scholar 

  • Goverde M, van der Heijden MGA, Wiemken A, Sanders IR, Erhardt A (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362–369

    Article  Google Scholar 

  • Hempel S, Stein C, Unsicker SB, Renker C, Auge H, Weisser WW, Buscot F (2009) Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system. Oecologia 160:267–277

    Article  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or to defend. Quart Rev Biol 67:283–335

    Article  Google Scholar 

  • Hoy CV, Vaughn TT, East DA (2000) Increasing the effectiveness of spring trap crops for Leptinotarsa decemlineata. Entomol Exp Appl 96:193–204

    Article  Google Scholar 

  • Johnson ND, Bentley BL (1991) Symbiotic N2-fixation and the elements of plant resistance to herbivores: lupine alkaloids and tolerance to defoliation. In: Barbosa P et al. (eds) Microbial mediations of plant herbivore interactions. Wiley, pp 45–63

  • Jones DA (1998) Why are so many food plants cyanogenic? Phytochemistry 47:155–162

    Article  CAS  PubMed  Google Scholar 

  • Kempel A, Brandl R, Schädler M (2009) Symbiotic soil microorganisms as players in aboveground plant-herbivore interactions―the role of rhizobia. Oikos 118:634–640

    Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Marx J (2004) The roots of plant-microbe collaborations. Science 304:234–236

    Article  PubMed  Google Scholar 

  • Miller RE, Woodrow IE (2008) Resource availability and the abundance of an N-based defense in an Australian tropical rain forest. Ecology 89:1503–1509

    Article  PubMed  Google Scholar 

  • Møller BL, Seigler DS (1999) Biosynthesis of cyanogenic glucosides, cyanolipids and related compounds. In: Singh BK (ed) Plant amino acids, biochemistry and biotechnology. Marcel Dekker, New York, pp 563–609

    Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Rostás M, Simon M, Hilker M (2003) Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic Appl Ecol 3:43–62

    Article  Google Scholar 

  • Schädler M, Roeder M, Brandl R, Matthies D (2007) Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Glob Chang Biol 13:1005–1015

    Article  Google Scholar 

  • Schappert PJ, Shore JS (1999) Cyanogenesis, herbivory and plant defense in Turnera ulmifolia on Jamaica. Ecoscience 6:511–520

    Google Scholar 

  • Sprent JI (2001) Nodulation in Legumes. Kew Royal Botanical Gardens, Kew

    Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen-fixing organisms: pure and applied aspects. Chapman and Hall

  • Szentesi A, Weber DC, Jermy T (2002) Role of visual stimuli in host and mate location of the Colorado potato beetle. Entomol Exp Appl 105:141–152

    Article  CAS  Google Scholar 

  • Urbańska A, Lerzczyńki B, Matok H, Dixon AFG (2002) Cyanide detoxifying enzymes of bird cherry-oat aphid. EJPAU, Biology 5:1–6. http://www.ejpau.media.pl

  • Van Brussel AAN, Planqué K, Quispel A (1977) The wall of Rhizobium leguminosarum in bacteroid and free-living forms. J Gen Microbiol 101:51–56

    Google Scholar 

  • van der Heijden MGA, Bakker R, Verwaal J, Scheublin TR, Rutten M, van Logtestijn R, Staehelin C (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • van der Putten WH, Vet L, Harvey J, Wäckers F (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton

    Google Scholar 

  • Yi HS, Heil M, Adame-Alvarez RM, Ballhorn DJ, Ryu CM (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151:2152–2161

    Article  CAS  PubMed  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jorgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65:293–306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding through the University of Duisburg-Essen and the German Science Foundation (Deutsche Forschungsgemeinschaft; DFG, grant Ba 3966/1-1). We further would like to thank Manfred Jensen for fruitful discussions and Sascha Eilmus for cultivation of bacteria. We especially thank Prof. Peter Bayer for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Ballhorn.

Additional information

Responsible Editor: Juha Mikola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thamer, S., Schädler, M., Bonte, D. et al. Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 341, 209–219 (2011). https://doi.org/10.1007/s11104-010-0635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0635-4

Keywords

Navigation