Skip to main content
Log in

A note on polynomial chaos expansions for designing a linear feedback control for nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a polynomial chaos-based framework for designing optimal linear feedback control laws for nonlinear systems with stochastic parametric uncertainty. The spectral decomposition of the original stochastic dynamical model in an orthogonal polynomial basis, prescribed by the Wiener–Askey scheme, provides a deterministic model from which the optimal linear control law is designed. Optimality of the proposed control law is proved by solving the Hamilton–Jacobi–Bellman equation, and asymptotic stability of the controlled nonlinear systems is guaranteed in the Lyapunov sense. We are especially interested in synchronization of chaotic systems. For this reason, the control strategy is applied in the trajectory tracking of periodic orbits for the Duffing oscillator and the Rössler system with uncertain stochastic parameters and initial conditions. The results are verified with Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rafikov, M., Balthazar, J.M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commun. Nonlinear Sci. Numer. Simul. 12, 1246–1255 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rafikov, M., Balthazar, J.M., Tusset, A.M.: An optimal linear design for nonlinear systems. J. Braz. Soc. Mech. Sci. Eng. 30(4), 279–284 (2008)

    Article  Google Scholar 

  3. Balthazar, J.M., Tusset, A.M., Bueno, A.M.: TM-AFM nonlinear motion control with robustness analysis to parametric errors in the control signal determination. J. Theo. Appl. Mech. 52(1), 93–106 (2014)

    Google Scholar 

  4. Nozaki, R., Balthazar, J.M., Tusset, A.M., Pontes, B.R., Bueno, A.M.: Nonlinear control system applied to atomic force microscope including parametric errors. J. Control Autom. Electr. Syst. 24(3), 223–231 (2013)

    Article  Google Scholar 

  5. Tusset, A.M., Piccirillo, V., Bueno, A.M., Balthazar, J.M., Sado, D., Felix, J.L.P., Brasil, R.M.L.R.F.: Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J. Vib. Control 1, 1–17 (2015)

    Google Scholar 

  6. Tusset, A.M., Rafikov, M., Balthazar, J.M.: Intelligent controller design for magnetorheological damper based on quarter-car model. J. Vib. Control 15(12), 1907–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pereira, D.C., Balthazar, J.M., Chavarette, F.R., Rafikov, M.: On nonlinear dynamics and an optimal control design to a longitudinal flight. J. Comput. Nonlinear Dyn. 3(1), 11012-1–11012-6 (2008)

    Article  Google Scholar 

  8. Balthazar, J.M., Bassinello, D.G., Tusset, A.M., Bueno, A.M., Pontes, B.R.: Nonlinear control in an electromechanical transducer with chaotic behaviour. Meccanica 49(8), 1859–1867 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Peruzzi, N.J., Chavarette, F.R., Balthazar, J.M., Tusset, A.M., Manfrim, A.L.P., Brasil, R.M.L.R.D.F.: The dynamic behavior of a parametrically excited time-periodic MEMS taking into account parametric errors. J. Vib. Control 1–10 (2015). doi:10.1177/1077546315573913

  10. Tusset, A.M., Balthazar, J.M., Bassinello, D., Pontes, B.R., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a MEMS comb-drive actuator. Nonlinear Dyn. 69(4), 1837–1857 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tusset, A.M., Piccirillo, V., Balthazar, J.M., Brasil, M.R.L.F.: On suppression of chaotic motions of a portal frame structure under non-ideal loading using a magneto-rheological damper. J. Theor. Appl. Mech. 53(3), 653–664 (2015)

  12. Tusset, A.M., Balthazar, J.M., Chavarette, F.R., Felix, J.L.P.: On energy transfer phenomena, in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-rheological damper. Nonlinear Dyn. 69(4), 1859–1880 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Piccirillo, V., Balthazar, J.M., Pontes, B.R., Felix, J.L.P.: Chaos control of a nonlinear oscillator with shape memory alloy using an optimal linear control: part I: ideal energy source. Nonlinear Dyn. 55(1), 139–149 (2009)

    Article  MATH  Google Scholar 

  14. Piccirillo, V., Balthazar, J.M., Pontes, B.R., Felix, J.L.P.: Chaos control of a nonlinear oscillator with shape memory alloy using an optimal linear control: part II: nonideal energy source. Nonlinear Dyn. 56(3), 243–253 (2009)

    Article  MATH  Google Scholar 

  15. Siddique, M., Rehan, M.: A concept of coupled chaotic synchronous observers for nonlinear and adaptive observers-based chaos synchronization. Nonlinear Dyn. 84(4), 2251–2272 (2016)

  16. Rafique, M.A., Rehan, M., Siddique, M.: Adaptive mechanism for synchronization of chaotic oscillators with interval time-delays. Nonlinear Dyn. 81(1–2), 495–509 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shi, X., Wang, Z.: Robust chaos synchronization of four-dimensional energy resource system via adaptive feedback control. Nonlinear Dyn. 60(4), 631–637 (2010)

    Article  MATH  Google Scholar 

  18. Kuo, Y.L.: Robust chaos synchronizations using an SDRE-based sub-optimal control approach. Nonlinear Dyn. 76(1), 733–742 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zaheer, M.H., Rehan, M., Mustafa, G., Ashraf, M.: Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling. ISA trans. 53(6), 1716–1730 (2014)

    Article  Google Scholar 

  20. Chen, D.Y., Liu, Y.X., Ma, X.Y., Zhang, R.F.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67(1), 893–901 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Delavari, H.: A novel fractional adaptive active sliding mode controller for synchronization of non-identical chaotic systems with disturbance and uncertainty. Int. J. Dyn. Control 1–13 (2015). doi:10.1007/s40435-015-0159-0

  22. Aghababa, M.P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dyn. 69(1–2), 247–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, J., Qiu, Y., Lu, H.: Adaptive robust nonlinear feedback control of chaos in PMSM system with modeling uncertainty. Appl. Math. Model. 40(19–20), 8265–8275 (2016)

  24. Ye, D., Zhao, X.: Robust adaptive synchronization for a class of chaotic systems with actuator failures and nonlinear uncertainty. Nonlinear Dyn. 76(2), 973–983 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of fourier-hermite functionals. Ann. Math. 48(2), 385–392 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fisher, J., Bhattacharya, R.: Linear quadratic regulation of systems with stochastic parameter uncertainties. Automatica 45(12), 2831–2841 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prabhakar, A., Fisher, J., Bhattacharya, R.: Polynomial chaos-based analysis of probabilistic uncertainty in hypersonic flight dynamics. J. Guid. Control 33(1), 222–234 (2010)

    Article  Google Scholar 

  30. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Sensitivity analysis of piezoaeroelastic energy harvesters. J. Intell. Mater. Syst. Struct. 23(13), 1523–1531 (2012)

    Article  Google Scholar 

  32. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)

    Article  Google Scholar 

  33. Sepahvand, K., Marburg, S., Hardtke, H.J.: Uncertainty quantification in stochastic systems using polynomial chaos expansions. Int. J. Appl. Mech. 2(2), 305–353 (2010)

    Article  Google Scholar 

  34. Ghanem, R.G., Spanos, P.D.: Spectral stochastic finite-element formulation for reliability analysis. J. Eng. Mech. 117(10), 2351–2372 (1991)

    Article  Google Scholar 

  35. Jacquelin, E., Adhikari, S., Sinou, J.J., Friswell, M.I.: Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences. J. Sound Vib. 356, 144–154 (2015)

    Article  Google Scholar 

  36. Fisher, J., Bhattacharya, R.: Stability analysis of stochastic systems using polynomial chaos. In: Proceedings of the American Control Conference, Seattle, USA (2008)

  37. Nechak, L., Berger, S., Aubry, E.: Non-intrusive generalized polynomial chaos for the robust stability analysis of uncertain nonlinear dynamic friction systems. J. Sound Vib. 332, 1204–1215 (2013)

    Article  Google Scholar 

  38. Kim, K.K., Braatz, R.D.: Generalized polynomial chaos expansion approaches to approximate stochastic receding horizon control with applications to probabilistic collision checking and avoidance. In: Proceedings of IEEE International Conference on Control Applications Dubrovnik, Croatia (2012)

  39. Hosder, S., Perez, R., Walters, R.W.: A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA (2006)

  40. Ko, J., Lucor, D., Sagaut, P.: Effects of base flow uncertainty on Couette flow stability. Comput. Fluids 43(1), 82–89 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hover, F.S., Triantafyllou, M.S.: Application of polynomial chaos in stability and control. Automatica 42, 789–795 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Fisher, J., Bhattacharya, R.: On stochastic LQR design and polynomial chaos. In: Proceedings of the Americal Control Conference, Seattle, USA (2008)

  43. Peng, Y.B., Ghanem, R., Li, J.: Polynomial chaos expansions for optimal control of nonlinear random oscillators. J. Sound Vib. 329, 3660–3678 (2010)

    Article  Google Scholar 

  44. Sriram, S., Jameson, A.: Robust optimal control using polynomial chaos and adjoints for systems with uncertain inputs. In: Proceedings of the 20th AIAA Computational Fluid Dynamics Conference. Honolulu, USA (2011)

  45. Fagiano, l., Khammash, M.: Nonlinear model predictive control via regularized polynomial chaos expansions. In: Proceedings of the IEEE 51st Annual Conference on Decision and Control. Maui, USA (2012)

  46. Mesbah, A., Streif, S., Findeisen, R., Braatz, R.: Stochastic nonlinear model predictive control with probabilistic constraints. In: Proceedings of the Americal Control Conference. Portland, USA (2014)

  47. Templeton, B.A., Ahmadian, M., Southward, S.C.: Probabilistic control using H2 control design and polynomial chaos: experimental design, analysis, and results. Probab. Eng. Mech. 30, 9–19 (2012)

    Article  Google Scholar 

  48. Calafiore, G.C., Dabbene, F.: Probabilistic robust control. In: Proceedings of the American Control Conference, New York, USA (2007)

  49. Branicki, M., Majda, A.J.: Fundamental limitations of polynomial chaos for uncertainty quantification on systems with intermittent instabilities. Commun. Math. Sci. 11(1), 55–103 (2012)

  50. Askey, R., Wilson, J.: Some basic hypergeometric polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 319(54) (1985)

  51. Debusschere, B.J., et al.: Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26(2), 698–719 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, Mineola (1965)

    MATH  Google Scholar 

  53. Sinha, S.C., Henrichs, J.T., Ravindra, B.A.: A general approach in the design of active controllers for nonlinear systems exhibiting chaos. Int. J. Bifurc. Chaos 10(1), 165–178 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus de Freitas Virgílio Pereira.

Additional information

This research work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ, Brazil), which has granted a scholarship to the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, M.d.F.V., Balthazar, J.M., dos Santos, D.A. et al. A note on polynomial chaos expansions for designing a linear feedback control for nonlinear systems. Nonlinear Dyn 87, 1653–1666 (2017). https://doi.org/10.1007/s11071-016-3140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3140-3

Keywords

Navigation