Skip to main content
Log in

Nonlinear aeroelastic stability analysis of hingeless helicopter rotor blades using FRF coupling and condition number

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, aeroelastic stability analysis of hingeless helicopter blades in frequency domain is studied. In this regard, the nonlinear structural beam model of Hodges–Dowell and an unsteady aerodynamic model based on Greenberg theory and using Loewy aerodynamic function are considered to construct the aeroelastic model. Then, the concept of optimum equivalent linear frequency response function (OELF) is implemented to derive the aeroelastic FRF by coupling the aerodynamic and structural FRFs. Finally, for stability analysis, the efficient and simple criterion of condition number (CN) of aeroelastic OELF is applied. The comparison of the obtained results against those in the literature shows the capability of the OELF and condition number criterion for capturing the instability boundaries of a complex, nonlinear, aeroelastic system such as helicopter blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(A_{i}-O_{ij}\) :

Modal integrals

\(c\) :

Blade chord

\({C}'(k)\) :

Loewy’s lift deficiency function

\(C_{l_\alpha }, C_{d_0}\) :

Lift coefficient and profile drag coefficient, respectively

\(H\) :

FRF/OELF

\(k\) :

Reduced frequency

\(k_A\) :

Radius of gyration of blade cross-section

\(k_m \) :

Mass radius of gyration of blade cross-section

K:

\({k_A^2}/{k_m^2}\)

\(L_\nu , L_w\) :

Dimensionless generalized aerodynamic forces per unit length

\(M_\phi \) :

Dimensionless aerodynamic pitching moment per unit length

\(S_{ ff} \) :

Power spectral density of excitation

\(S_{x_n f} \) :

Cross-spectral density of excitation and response

\(\bar{{V}}_{i}\) :

Induced flow velocity

\(u, v, w\) :

Displacements in the \(x\), \(y\), \(z\) directions, respectively

\(V_j, W_j, \Phi _{j} \) :

Generalized coordinates

\(x, y, z\) :

Undeformed coordinate system

\(\gamma \) :

Lock number

\(\delta _{ij} \) :

Kronecker delta

\(\theta , \theta _f \) :

Collective pitch angle and collective angle of instability of linearized aeroelastic system, respectively

\(\alpha _{j}, \beta _{j}, \gamma _{j} \) :

Constants related to mode shapes

\(\beta _{pc} \) :

Precone angle

\(\kappa \) :

Dimensionless torsional rigidity

\(\Lambda _1, \Lambda _2 \) :

Dimensionless bending stiffnesses

\(\mu , \mu _1, \mu _2 \) :

Dimensionless mass radius of gyration

\(\sigma \) :

Solidity

\(\varphi \) :

Elastic torsion deflection

\(\omega \) :

Frequency

\(\bar{(\,)}\) :

Non-dimensional parameter

\(\left( \,\right) _0, \Delta \left( \, \right) \) :

Equilibrium and perturbation components of generalized coordinates

\(\left( \, \right) ^{\prime }\) :

\(\frac{\partial }{\partial x}\)

:

\(\frac{\partial }{\partial t}\)

References

  1. Hodges, D.: A simplified algorithm for determining the stability of linear systems. AIAA J. 15, 424–425 (1977)

    Article  Google Scholar 

  2. Hodges, D., Ormiston, R.: Stability of elastic bending and torsion of uniform cantilever rotor blades in hover with variable structural coupling. NASA TN D-8192 (1976)

  3. Shahverdi, H., Nobari, A., Behbehani-Nejad, M., Haddadpour, H.: Aeroelastic analysis of helicopter rotor blade in hover using an efficient reduced-order aerodynamic model. J. Fluids Struct. 25, 1243–1257 (2009)

    Article  Google Scholar 

  4. Friedmann, P., Tong, P.: Dynamic nonlinear elastic stability of helicopter rotor blades in hover and in forward flight. NASA CR-114485 (1972)

  5. Sivaneri, T., Chopra, I.: Dynamic stability of a rotor blade using finite element analysis. AIAA J. 20, 716–723 (1982)

    Article  MATH  Google Scholar 

  6. Bielawa, L.: Rotary Wing Structural Dynamics and Aeroelasticity. American Institute of Aeronautics and Astronautics, Washington, DC (1992)

    Google Scholar 

  7. Hodges, D., Dowell, E.: Nonlinear equation of motion for the elastic bending and tortion of twisted nonuniform rotor blades. NASA TN D-7818 (1974)

  8. Lee, I., Cho, M.: Aeroelastic stability of hingeless rotor blade in hover using large deflection theory. AIAA J. 32, 1472–1477 (1994)

    Article  MATH  Google Scholar 

  9. Roknizadeh, S.A.S., Nobari, A.S., Mohagheghi, M., Shahverdi, H.: Stability analysis of aeroelastic systems based on aeroelastic frequency response function and condition number. Aircr. Eng. Aerosp. Technol. 84, 299–310 (2012)

    Article  Google Scholar 

  10. Roknizadeh, S.A.S., Nobari, A., Shahverdi, H.: A new frequency domain based approach for a nonlinear aeroelasticity analysis. J. Fluids Struct. 43, 220–230 (2013)

    Article  Google Scholar 

  11. Kashani, H., Nobari, A.: Identification of dynamic characteristics of nonlinear joint based on the optimum equivalent linear frequency function. J. Sound Vib. 329, 1460–1479 (2010)

    Article  Google Scholar 

  12. Hodges, D.H., Pierce, G.A.: Introduction to Structural Dynamics and Aeroelasticity. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  13. Greenberg, J.: Airfoil in sinusoidal motion in a pulsating stream. NACA TN 1326 (1947)

  14. Sadati, S., Nobari, A., Naraghi, T.: Identification of a nonlinear joint in an elastic structure using optimum equivalent linear frequency response function. Acta Mech. 223, 1507–1516 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. S. Roknizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roknizadeh, S.A.S., Nobari, A.S. & Shahverdi, H. Nonlinear aeroelastic stability analysis of hingeless helicopter rotor blades using FRF coupling and condition number. Nonlinear Dyn 82, 289–297 (2015). https://doi.org/10.1007/s11071-015-2157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2157-3

Keywords

Navigation