Skip to main content
Log in

Changes in Amino Acids and Nitric Oxide Concentration in Cerebrospinal Fluid During Labor Pain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study analyzes the relationship between amino acids and pain perception during active labor. Cerebrospinal fluid (CSF) levels of the excitatory amino acids (EAAs)—glutamate, aspartate and their amide forms, inhibitory amino acids (IAAs)—glycine, γ-amino butyric acid (GABA) and taurine and nitric oxide (NO) related compounds—arginine and citrulline (by-product of NO synthesis) were compared between pregnant women at term pregnancy with labor pain (n = 38) and without labor pain (Caesarian section; n = 30). The levels of aspartate, glycine, GABA and citrulline were significantly higher; whilst taurine was significantly lower in the labor pain group. These findings suggest that aspartate and NO are associated with labor pain. An inhibitory role for the IAA taurine and a pronociceptive role for glycine in labor pain are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

High performance liquid chromatography

CSF:

Cerebrospinal fluid

EAA:

Excitatory amino acids

GABA:

γ-Amino butyric acid

IAA:

Inhibitory amino acids

NMDA:

N-methyl-d-aspartate

NO:

Nitric oxide

References

  1. Melzack R (1993) Labor pain as a model of acute pain. Pain 53:117–120

    Article  PubMed  CAS  Google Scholar 

  2. Lewin GR, Lu Y, Park J (2004) A plethora of pain molecules. Curr Opin Neurobiol 14:443–449

    Article  PubMed  CAS  Google Scholar 

  3. Yaksh TL, Hua XY, Kalcheva I et al (1999) The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proc Natl Acad Sci USA 96:7680–7686

    Article  PubMed  CAS  Google Scholar 

  4. Olofsson C, Ekblom A, Ekman-Ordeberg G et al (1997) Increased cerebrospinal fluid concentration of aspartate but decreased concentration of nitric oxide breakdown products in women experiencing visceral pain during active labor. Neuroreport 8:995–998

    Article  PubMed  CAS  Google Scholar 

  5. Hsu MM, Chou YY, Chang YC et al (2001) An analysis of excitatory amino acids, nitric oxide and prostaglandin E2 in the cerebrospinal fluid of pregnant women: the effect on labor pain. Anesth Analg 93:1293–1296

    Article  PubMed  CAS  Google Scholar 

  6. Ahmadi S, Muth-Selbach U, Lauterbach A et al (2003) Facilitation of spinal NMDA receptor currents by spillover of synaptically released glycine. Science 300:2094–2097

    Article  PubMed  CAS  Google Scholar 

  7. Sethuraman R, Lee TL, Tachibana S (2004) Simple quantitative HPLC method for measuring physiologic amino acids in cerebrospinal fluid without pretreatment. Clin Chem 50:665–669

    Article  PubMed  CAS  Google Scholar 

  8. Sarwar G, Botting HG (1993) Evaluation of liquid chromatographic analysis of nutritionally important amino acids in food and physiological samples. J Chromatogr B 615:1–22

    Article  CAS  Google Scholar 

  9. Jimenez-Jimenez FJ, Molina JA, Vargas C et al (1996) Neurotransmitter amino acids in cerebrospinal fluid of patients with Parkinson’s disease. J Neurol Sci 141:39–44

    Article  PubMed  CAS  Google Scholar 

  10. Rizzo V, Anesi A, Montalbetti L et al (1996) Reference values of neuroactive amino acids in the cerebrospinal fluid by high-performance liquid chromatography with electrochemical detection and fluorescence detection. J Chromatogr A 729:181–188

    Article  PubMed  CAS  Google Scholar 

  11. Levine J, Panchalingam K, McClure J et al (2000) Stability of CSF metabolites measured by proton NMR. J Neural Transm 107:843–848

    Article  PubMed  CAS  Google Scholar 

  12. Mou S, Ding X, Liu Y (2002) Separation methods for taurine analysis in biological samples. J Chromatogr B 781:251–267

    Article  CAS  Google Scholar 

  13. Castillo J, Davalos A, Noya M (1997) Progression of Ischaemic stroke and excitotoxic amino acids. Lancet 349:79–83

    Article  PubMed  CAS  Google Scholar 

  14. Mally J, Szalai G, Stone TW (1997) Changes in concentration of amino acids in serum and CSF of patients with Parkinson’s disease. J Neurol Sci 151:159–162

    Article  PubMed  CAS  Google Scholar 

  15. Jimenez-Jimenez FJ, Molina JA, Gomez P et al (1998) Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer’s disease. J Neural Transm 105:269–277

    Article  PubMed  CAS  Google Scholar 

  16. Zhang X, Qiu M, Zhang X et al (1998) Excitatory amino acids in CSF and their relations with clinical features and outcomes in acute head injury. Chin Med J 111:978–981

    PubMed  CAS  Google Scholar 

  17. Tsai GE, Ragan P, Chang R et al (1998) Increased Glutamatergic Neurotransmission and Oxidative stress after alcohol withdrawal. Am J Psychiatry 155:1207–1213

    PubMed  CAS  Google Scholar 

  18. Tsai G, van Kammen DP, Chen S et al (1998) Glutamatergic neurotransmission involves structural and clinical deficits of schizophrenia. Biol psychiatry 44:667–674

    Article  PubMed  CAS  Google Scholar 

  19. Sjoberg S, Eriksson M, Nordin C (1998) L-Thyroxine treatment and neurotransmitter levels in the CSF of hypothyroid patients: a pilot study. Eur J Endocrinol 139:493–497

    Article  PubMed  CAS  Google Scholar 

  20. Aral YZ, Gucuyener K, Atalay Y et al (1998) Role of excitatory amino acids in neonatal hypoglycemia. Acta Paediatr Jpn 40:303–306

    PubMed  CAS  Google Scholar 

  21. Tucci S, Pinto C, Goyo J et al (1998) Measurement of glutamine and glutamate by capillary electrophoresis and laser induced fluorescence detection in CSF of meningitis sick children. Clin Biochem 31:143–150

    Article  PubMed  CAS  Google Scholar 

  22. Oishi M, Mochizuki Y (1998) Regional cerebral blood flow and CSF glutamate in leukoaraiosis. J Neurol 245:777–780

    Article  PubMed  CAS  Google Scholar 

  23. Oishi M, Mochizuki Y, Sanuki E (1998) Regional cerebral blood flow and CSF amino acid analysis in elderly dementia. No To Shinkei 50:1018 (Japanese)

  24. Egashira T, Goto H, Takeda H et al (1999) Alterations in neurotransmitter, amino acid and free radical related substances in CSF in patients with cerebrovascular diseases. Nippon Ronen Igakkai Zasshi 36:256–261 (Japanese)

    Google Scholar 

  25. Gucuyener K, Atalay Y, Aral YZ et al (1999) Excitatory amino acids and taurine levels in CSF of hypoxic ischemic encephalopathy in new born. Clin Neurol Neurosurg 101:171–174

    Article  PubMed  CAS  Google Scholar 

  26. Roldan A, Figueras-Aloy J, Deulofeu R et al (1999) Glycine and other neurotransmitter amino acids in CSF in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. Acta Paediatr 88:1137–1141

    Article  PubMed  CAS  Google Scholar 

  27. Eriksson AS, O’Connor WT (1999) Analysis of CSF amino acids in young patients with generalised refractory epilepsy during an add-on study with lamotrigine. Epilepsy Res 34:75–83

    Article  PubMed  CAS  Google Scholar 

  28. Wajner M, Coelho DM, Barschak AG et al (2000) Reduction of large neutral amino acid concentrations in plasma and CSF of patients with maple syrup urine disease during crises. J Inherit Metab Dis 23:505–512

    Article  PubMed  CAS  Google Scholar 

  29. Kuiper MA, Teerlink T, Visser JJ et al (2000) L-Glutamate, L-arginine and L-citrulline levels in CSF of Parkinson’s disease, multiple system atrophy and Alzhimer’s disease patients. Short communication J Neural Transm 107:183–189

    Article  PubMed  CAS  Google Scholar 

  30. Garseth M, White LR, Aasly J (2001) Little change in CSF amino acids in subtypes of multiple sclerosis compared with acute polyradiculoneuropathy. Neurochem Int 39:111–115

    Article  PubMed  CAS  Google Scholar 

  31. Kostera-Pruszczyk A, Niebroj-Dobosz I, Emeryk-Szajewska B et al (2002) Motor unit hyperexcitability in amyotrophic lateral sclerosis vs amino acids acting as neurotransmitters. Acta Neurol Scand 106:34–38

    Article  PubMed  CAS  Google Scholar 

  32. Leira R, Davalos A, Aneiros A et al (2002) Headache as a surrogate marker of the molecular mechanisms implicated in progressing stroke. Cephalalgia 22:303–308

    Article  PubMed  CAS  Google Scholar 

  33. Gallai V, Alberti A, Gallai B et al (2003) Glutamate and nitric oxide pathway in chronic daily headache: evidence from cerebrospinal fluid. Cephalalgia 23:166–174

    Article  PubMed  CAS  Google Scholar 

  34. Engelborghs S, Marescau B, De Deyn PP (2003) Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson’s disease. Neurochem Res 28:1145–1150

    Article  PubMed  CAS  Google Scholar 

  35. Sarchielli P, Greco L, Floridi A et al (2003) Excitatory amino acids and multiple sclerosis—Evidence from cerebrospinal fluid. Arch Neurol 60:1082–1088

    Article  PubMed  Google Scholar 

  36. Regland B, Abrahamsson L, Blennow K et al (2004) CSF-methionine is elevated in psychotic patients. J Neural Transm 111:631–640

    Article  PubMed  CAS  Google Scholar 

  37. Rainesalo S, karanen T, Palmio J et al (2004) Plasma and cerebrospinal fluid aminoacids in epileptic patients. Neurochem Res 29:319–324

    Article  CAS  Google Scholar 

  38. Kawashima H, Morishima T, Togashi T et al (2004) Extraordinary changes in excitatory amino acid levels in cerebrospinal fluid of Influenza-associated encephalopathy of children . Neurochem Res 29:1537–1540

    Article  CAS  Google Scholar 

  39. Frye MA , Tsai GE, Huggins T et al (2006) Low cerebrospinal fluid glutamate and glycine in refractive affective disorder. Biol Psychiatry. DOI 10.1016/j.biopsych.2006.01.024

  40. Chatterton JE, Awobuluyl M, Premkumar LS et al (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798

    PubMed  CAS  Google Scholar 

  41. Jasmin L, Rabkin SD, Granato A et al (2002) Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature 424:316–320

    Article  CAS  Google Scholar 

  42. Altemus M, Fong J, Yang R et al (2004) Changes in cerebrospinal fluid neurochemistry during pregnancy. Biol Psychiatry 56:386–392

    Article  PubMed  CAS  Google Scholar 

  43. Castillo J, Martinez F, Corredera E et al (1995) Amino acid transmitters in patients with headache during the acute phase of cerebrovascular ischemic disease. Stroke 26:2035–2039

    PubMed  CAS  Google Scholar 

  44. Li F, Obrosova IG, Abatan O et al (2005) Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am J Physiol Endocrinol Metab 288:E29–36

    Article  PubMed  CAS  Google Scholar 

  45. Serrano JS, Serrano MI, Guerrero MR et al (1990) Antinociceptive effect of taurine and its inhibition by naloxone. Gen Pharmacol 21:333–336

    PubMed  CAS  Google Scholar 

  46. Silva MA, Cunha GM, Viana GS et al (1993) Taurine modulates chemical nociception in mice. Braz J Med Biol Res 26:1319–1324

    PubMed  CAS  Google Scholar 

  47. Perez-Neri I, Montes S, Boll MC et al (2004) Liquid chromatographic-fluorimetric method for the estimation of nitric oxide biosynthesis in the central nervous system. J Chromatogr B 806:133–139

    Article  CAS  Google Scholar 

  48. Larson A, Giovengo SL, Russell IJ et al (2000) Changes in the concentrations of amino acids in the cerebrospinal fluid that correlate with pain in patients with fibromyalgia: implications for nitric oxide pathways. Pain 87:201–211

    Article  PubMed  CAS  Google Scholar 

  49. Lawrence AJ, Jarrott B (1993) Nitric oxide increases interstitial excitatory amino acid release in the rat dorsomedial medulla oblongata. Neurosci Lett 151:126–129

    Article  PubMed  CAS  Google Scholar 

  50. Fujita T, Kamisaki Y, Yonehara N (2004) Nitric oxide-induced increase of excitatory amino acid levels in the trigeminal nucleus caudalis of the rat with tactile hypersensitivity evoked by the loose-ligation of the inferior alveolar nerves. J Neurochem 91:558–567

    Article  PubMed  CAS  Google Scholar 

  51. Molina J, Jimenez-Jimenez FJ, Gomez P et al (1997) Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson’s disease. J Neurol Sci 150:123–127

    Article  PubMed  CAS  Google Scholar 

  52. Molina JA, Jimenez-Jimenez FJ, Vargas C et al (1998) Cerebrospinal fluid levels of non-neurotransmitter amino acids in patients with Alzheimer’s disease. J Neural Transm 105:279–286

    Article  PubMed  CAS  Google Scholar 

  53. Tapiero H, Mathe G, Couvereur P et al (2002) Free amino acids in human health and pathologies. I. Arginine. Biomed Pharmacother 56:439–445

    Article  PubMed  CAS  Google Scholar 

  54. Carlo MD Jr, Loeser RF (2003) Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48:3419–3430

    Article  PubMed  CAS  Google Scholar 

  55. Tapiero H, Mathe G, Couvereur P et al (2002) Free amino acids in human health and pathologies. II Glutamine and glutamate. Biomed Pharmacother 56:446–457

    Article  PubMed  CAS  Google Scholar 

  56. Rubio-Aliaga I, Boll M, Vogt Weisenhorn DM et al (2004) The proton/amino acid cotransporter PAT2 is expressed in neurons with a different subcellular localization than its paralog PAT1. J Biol Chem 279:2754–2760

    Article  PubMed  CAS  Google Scholar 

  57. Muth-Selbach U, Dybek E, Kollosche K et al (2004) The spinal antinociceptive effect of nocistatin in neuropathic rats is blocked by D-serine. Anesthesiology 101:753–758

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by National Medical Research Council of Singapore (NMRC grant No. 0678/2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinro Tachibana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sethuraman, R., Lee, TL., Chui, JW. et al. Changes in Amino Acids and Nitric Oxide Concentration in Cerebrospinal Fluid During Labor Pain. Neurochem Res 31, 1127–1133 (2006). https://doi.org/10.1007/s11064-006-9133-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9133-8

Keywords

Navigation