Skip to main content

Advertisement

Log in

Different Efficacy of Nanoparticle and Conventional ZnO in an Animal Model of Anxiety

  • Published:
Neurophysiology Aims and scope

As has been shown, trace element supplementation by zinc, e.g., in the form of zinc oxide (ZnO), can significantly influence the anxiety level. We investigated the effects of ZnO in the form of nanoparticles (NPs) in comparison with conventional ZnO (cZnO) in an animal model of anxiety. Adult male Wistar rats were divided into seven groups, control (receiving 0.9% saline) and six groups receiving 5, 10, and 20 mg/kg ZnO NPs and 5, 10, and 20 mg/kg cZnO. All drugs dispersed in 0.9% saline were injected i.p.; 30 min later, the anxiety level was estimated according to the results of the elevated plus maze test. ZnO NPs (5 mg/kg) and cZnO (10 and 20 mg/kg) significantly increased the normalized values of time spent in open arms (open arm time, OAT, %) in comparison with the control group (P < 0.05). This is indicative of the anxiolytic effects of these components; in addition, 20 mg/kg ZnO NPs reduced the intensity of locomotor activity (P < 0.05). The serum zinc concentration was increased manifold by anxiolytic doses of the components. All doses increased serum pH to 8.05-8.10 and kept this index constant for 24 h. These results indicate that the anxiolytic effect of ZnO NPs is much more intense than that of conventional ZnO, but the introduction of ZnO NP as a new drug for the treatment of anxiety disorders needs further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Kessler, W. T. Chiu, O. Demler, and E. E. Walters, “Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication,” Arch. Gen. Psychiat., 62, No. 6, 617–627 (2005).

    Article  PubMed  Google Scholar 

  2. T. E. Moffitt, H. Harrington, A. Caspi, et al., “Depression and generalized anxiety disorder: cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years,” Arch. Gen. Psychiat., 64, No. 6, 651–660 (2007).

    Article  PubMed  Google Scholar 

  3. A. Takeda, “Movement of zinc and its functional significance in the brain,” Brain. Res. Rev., 34, No. 3, 137–148 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. N. L. Harrison and S. J. Gibbons, “Zn2+: an endogenous modulator of ligand- and voltage-gated ion channels,” Neuropharmacology, 33, 935–952 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. J. Magistretti, L. Castelli, V. Taglietti, and F. Tanzi, “Dual effect of Zn2+ on multiple types of voltage-dependent Ca2+ currents in rat palaeocortical neurons,” Neuroscience, 117, No. 2, 249–264 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. T. G. Smart, X. Xie, and B. J. Krishek, “Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc,” Prog. Neurobiol., 42, 393–441 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. A. S. Prasad, “Discovery of human zinc deficiency: 50 years later,” J. Trace. Elem. Med. Biol., 26, 66–69 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. N. M Tassabehji, R. S. Corniola, A. Alshingiti, and C. W. Levenson, “Zinc deficiency induces depressionlike symptoms in adult rats,” Physiol. Behav., 95, No. 3, 365–369 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. N. Whittle, G. Lubec, and N. Singewald, “Zinc deficiency induces enhanced depression-like behavior and altered limbic activation reversed by antidepressant treatment in mice,” Amino Acids, 36, No. 1, 147–158 (2009).

    Article  PubMed  CAS  Google Scholar 

  10. S. Sobhanirad, R. Valizade, A. Moghimi, and A. Tahmasebi, “Evaluation of the anxiolytic effects of zinc supplemented diet in the elevated plus-maze test,” Res. J. Biol. Sci., 3, No. 9, 964–967 (2008).

    Google Scholar 

  11. H. M. Edwards and D. H. Baker, “Bioavailability of zinc in several sources of zinc oxide, zinc sulfate, and zinc metal,” J. Anim. Sci., 77, No. 10, 2730–2735 (1999).

    PubMed  CAS  Google Scholar 

  12. M. V. Do Carmo E Sб, L. E. Pezzato, M. M. Barros, and N/ P. P. De Magalhгes Padilha, “Relative bioavailability of zinc in supplemental inorganic and organic sources for Nile tilapia, Oreochromisniloticus fingerlings,” Aquacult. Nutr., 11, No. 4, 273–281 (2005).

    Article  Google Scholar 

  13. C. M. Sayes, K. L. Reed, and D. B. Warheit, “Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles,” Toxicol. Sci., 97, No. 1, 163–180 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. A. Nel, T. Xia, L. Mдdler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, 311, No. 5761, 622–627 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. T. Jin, D. Sun, J. Y. Su, et al., “Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7,” J. Food. Sci., 74, No. 1, 46–52 (2009).

    Article  Google Scholar 

  16. L. Yan, F. Zhao, S. J. Li, et al., “Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes and graphenes,” Nanoscale, 3, No. 2, 362–382 (2011).

    Article  PubMed  CAS  Google Scholar 

  17. J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert. Opin. Drug. Deliv., 7, No. 9, 1063–1077 (2010).

    Article  PubMed  CAS  Google Scholar 

  18. H. J. Wang, A. C. Growcock, T. H. Tang, et al., “Zinc oxide nanoparticle disruption of store-operated calcium entry in a muscarinic receptor signaling pathway,” Toxicol. In Vitro, 24, No. 7, 1953–1961 (2010).

    Article  PubMed  CAS  Google Scholar 

  19. A. O. Rosa, J. Lin, J. B. Calixto, et al., “Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice,” Behav. Brain. Res., 144, 87–93 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. M. R. Zarrindast, Sahand Babapoor-Farrokhran, Savalan Babapoor-Farrokhran, and A. Rezayof, “Involvement of opioidergic system of the ventral hippocampus, the nucleus accumbens or the central amygdala in anxietyrelated behavior,” Life. Sci., 82, 1175–1181 (2008).

    Article  PubMed  CAS  Google Scholar 

  21. M. Mard-Soltani, M. Kesmati, L. Khajehpour, et al., “Interaction between anxiolytic effect of testosterone and b-1 adrenoceptors of basolateral amygdala,” Int. J. Pharmacol., 8, No. 5, 344–354 (2012).

    Article  CAS  Google Scholar 

  22. G. Sonavane, K. Tomoda, and K. Makino, “Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size,” Colloids. Surf., B, Biointerfaces, 66, 274–280 (2008).

    Article  CAS  Google Scholar 

  23. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett., 4, 662–668 (2006).

    Article  Google Scholar 

  24. S. Arora, J. M. Rajwade, and K. M. Paknikar, “Nanotoxicology and in vitro studies: The need of the hour,” Toxicol. Appl. Pharmacol., 258, No. 2, 151–165 (2012).

    Article  PubMed  CAS  Google Scholar 

  25. X. Peng, S. Palma, N. S. Fisher, and S. S. Wong, “Effect of morphology of ZnO nanostructures on their toxicity to marine algae,” Aquat. Toxicol., 102, Nos. 3/4, 186–196 (2011).

    Article  PubMed  CAS  Google Scholar 

  26. P. Decuzzi, F. Causa, M. Ferrari, and P. A. Netti, “The effective dispersion of nanovectors within the tumor microvasculature,” Ann. Biomed. Eng., 34, No. 4, 633–641 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. A. Takeda and H. Tamano, “Insight into zinc signaling from dietary zinc deficiency,” Brain. Res. Rev., 62, No. 1, 33–44 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. P. Paoletti, A. M. Vergnano, B. Barbour, and M. Casado, “Zinc at glutamatergic synapses,” Neuroscience, 158, No. 1, 126–136 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. V. Bergink, H. J. G. M. Van Megen, and H. G. M. Westenberg, “Glutamate and anxiety,” Eur. Neuropsychopharmacol., 14, 175–183 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. C. M. Padovan, E. A. Del Bel, and F. S. Guimaraes, “Behavioral effects in the elevated plus maze of an NMDA antagonist injected into the dorsal hippocampus: influence of restraint stress,” Pharmacol. Biochem. Behav., 67, No. 2, 325–330 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. J. Y. Koh and D. W. Choi, “Zinc toxicity on cultured cortical neurons: Involvement of N-methyl-D-aspartate receptors,” Neuroscience, 60, No. 4, 1049–1057 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. Y. V. Li, C. J. Hough, and J. M. Sarvey, “Do we need zinc to think?” Sci. STKE, 182, 19 (2003).

    Google Scholar 

  33. M. Rezvanfard, M. R. Zarrindast, and P. Bina, “Role of ventral hippocampal GABA(A) and NMDA receptors in the anxiolytic effect of carbamazepine in rats using the elevated plus maze test,” Pharmacology, 84, No. 6, 356–366 (2009).

    Article  PubMed  CAS  Google Scholar 

  34. A. Takeda, M. Hirate, H. Tamano, and N. Oku, “Release of glutamate and GABA in the hippocampus under zinc deficiency,” J. Neurosci. Res., 72, 537–542 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. A. Takeda, A. Minami, Y. Seki, and N. Oku, “Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus,” J. Neurosci. Res., 75, 225–229 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kesmati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torabi, M., Kesmati, M., Harooni, H.E. et al. Different Efficacy of Nanoparticle and Conventional ZnO in an Animal Model of Anxiety. Neurophysiology 45, 299–305 (2013). https://doi.org/10.1007/s11062-013-9372-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-013-9372-7

Keywords

Navigation