Skip to main content
Log in

Direct preparation of ultrafine BaTiO3 nanoparticles by chemical vapor synthesis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ultrafine, crystalline barium titanate (BaTiO3) nanoparticles were synthesized by chemical vapor synthesis (CVS). Titanium- and Barium-organometallic solid precursors were vaporized using a laser flash evaporator as precursor delivery unit. The process parameters such as precursor ratio, reactor temperature, and reactor length were varied in order to find the optimal conditions to allow the direct synthesis of crystalline particles with the stoichiometric composition. Crystalline, spherical nanoparticles with a size of about 8 nm, free of barium carbonates and with low degree of agglomeration were obtained using a precursor ratio of Ba/Ti = 4, a maximum reactor temperature of 1,700 °C, and a total reactor length of 165 cm. The potential of the CVS process for the synthesis of nanoscaled, impurity-free, and phase-pure BaTiO3 particles in one step is presented. The results demonstrate the capabilities of the CVS method, not only for the preparation of BaTiO3, but also for many other multi-component systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Avrahami Y, Tuller HL (2003) Rhombohedral-phase barium titanate as a piezoelectric transducer. US Patent No. 6,526,833

  • Brzozowski E, Castro MS (2000) Synthesis of barium titanate improved by modifications in the kinetics of the solid state reaction. J Eur Ceram Soc 20:2347–2351

    Article  Google Scholar 

  • Cho WS (1998) Structural evolution and characterization of BaTiO3 nanoparticles synthesized from polymeric precursor. J Phys Chem Solids 59:659–666

    Article  Google Scholar 

  • Djenadic R, Winterer M (2012) Chemical vapor synthesis of nanocrystalline oxides. In: Lorke A, Winterer M, Schmechel R, Schultz C (eds) Nanoparticles from the gas phase: formation, structure, properties, 1st edn. Springer, Heidelberg, pp 49–76

    Chapter  Google Scholar 

  • Djenadic R, Akgül G, Attenkofer K, Winterer M (2010) Chemical vapor synthesis and structural characterization of nanocrystalline Zn1−x Co x O (x = 0–0.50) particles by X-ray diffraction and X-ray absorption spectroscopy. J Phys Chem C 114:9207–9215

    Article  Google Scholar 

  • Evangelou EK, Konofaos N (2000) Properties of barium titanate (BaTiO3) thin films grown on silicon by rf magnetron sputtering. Philos Mag B 80:395–407

    Article  Google Scholar 

  • Gajović A, Pleština JV, Žagar K, Plodinec M, Šturm S, Čeh M (2013) Temperature-dependent raman spectroscopy of BaTiO3 nanorods synthesized by using a template-assisted sol-gel procedure. J Raman Spectrosc 44:412–420

    Article  Google Scholar 

  • Hennings D, Rosenstein G, Schreinemacher H (1991) Hydrothermal preparation of barium titanate from barium–titanium acetate gel precursors. J Eur Ceram Soc 8:107–115

    Article  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, beahavior, and measurement of airborn particles, 2nd edn. Wiley, New York, p 90

    Google Scholar 

  • Hoshina T, Kakemoto H, Tsurumi T, Wada S, Yashima M (2006) Size and temperature induced phase transition behaviors of barium titanate nanoparticles. J Appl Phys 99:054311

    Article  Google Scholar 

  • Itoh Y, Lenggoro IW, Okuyama K, Mädler L, Pratsinis SE (2003) Size tunable synthesis of highly crystalline BaTiO3 nanoparticles using salt-assisted spray pyrolysis. J Nanopart Res 5:191–198

    Article  Google Scholar 

  • Kasap SO, Capper P (2006) Springer handbook of electronic and photonic materials. Springer, New York

    Google Scholar 

  • Kirby KW (1988) Alkoxide synthesis techniques for BaTiO3. Mater Res Bull 23:881–890

    Article  Google Scholar 

  • Kishi H, Mizuno Y, Chazono H (2003) Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 42:1–15

    Article  Google Scholar 

  • Kiss LB, Söderlund J, Niklasson GA, Granqvist CG (1999) New approach to the origin of lognormal size distributions of nanoparticles. Nanotechnology 10:25–28

    Article  Google Scholar 

  • Kodama S, Kido O, Suzuki H, Saito Y, Kaito C (2005) Characterization of nanoscale BaTiO3 ultrafine particles prepared by gas evaporation method. J Cryst Growth 282:60–65

    Article  Google Scholar 

  • Kotecki DE et al (1999) (Ba, Sr)TiO3 dielectrics for future stacked-capacitor DRAM. IBM J Res Develop 43:367–380

    Article  Google Scholar 

  • Kumar S, Messing GL, White WB (1993) Metal organic resin derived barium titanate: I, formation of barium titanium oxycarbonate intermediate. J Am Ceram Soc 76:617–624

    Article  Google Scholar 

  • Lee KK, Kang YC, Jung KY, Kim JH (2005) Preparation of nano-sized BaTiO3 particle by citric acid-assisted spray pyrolysis. J Alloys Compd 395:280–285

    Article  Google Scholar 

  • Motta FV, Marques APA, Escote MT, Melo DMA, Ferreira AG, Longo E, Leite ER, Varela JA (2008) Preparation and characterizations of Ba0.8Ca0.2TiO3 by complex polymerization method (CPM). J Alloys Compd 465:452–457

    Article  Google Scholar 

  • Nakano H, Suzuki K, Kizima K (2006) Thermal behavior of BaTiO3 particles synthesized by plasma chemical vapor deposition. J Am Ceram Soc 89:1461–1464

    Article  Google Scholar 

  • Noma T, Wada S, Yano M, Suzuki T (1996) Analysis of lattice vibration in fine particles of barium titanate single crystal including the lattice hydroxyl group. J Appl Phys 80:5223

    Article  Google Scholar 

  • Ohno T, Suzuki D, Suzuki H (2004) Size effect for barium titanate nano-particles KONA. KONA Powder Part J 22:195–200

    Article  Google Scholar 

  • Park K, Xu S, Liu Y, Hwang G, Kang SL, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943

    Article  Google Scholar 

  • Pecharsky VK, Zavalij PY (2005) Fundamentals of powder diffraction and structural characterization of materials. Springer, New York

    Google Scholar 

  • Pokorny J, Pasha UM, Ben L, Thakur OP, Sinclair DC, Reaney IM (2011) Use of raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J Appl Phys 109:114110

    Article  Google Scholar 

  • Potdar HS, Singh P, Deshpande SB, Godbole PD, Date SK (1990) Low-temperature synthesis of ultrafine barium titanate (BaTiO3) using organometallic barium and titanium precursors. Mater Lett 10:112–117

    Article  Google Scholar 

  • Purwantoa A, Wanga WN, Lenggoro IW, Okuyamaa K (2007) Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis. J Eur Ceram Soc 27:4489–4497

    Article  Google Scholar 

  • Ravi V, Kutty RN (1990) Current-limiting action of mixed phase BaTiO3 ceramic semiconductors. J Appl Phys 68:4891

    Article  Google Scholar 

  • Schilling C, Winterer M (2014) Preserving particle characteristics at increasing production rate of ZnO nanoparticles by chemical vapor synthesis. Chem Vap Depos 20:138–145

    Article  Google Scholar 

  • Schneider L, Zaitsev SV, Bacher G, Jin W, Winterer M (2007) Recombination dynamics in ZnO nanoparticles produced by chemical vapor synthesis. J Appl Phys 102:023524

    Article  Google Scholar 

  • Shi ZQ, Jia QX, Anderson WA (1991) High-performance barium titanate capacitors with double layer structure. J Electron Mater 20:939–944

    Article  Google Scholar 

  • Shiratori Y, Pithan C, Dornseiffer J, Waser R (2007) Raman scattering studies on nanocrystalline BaTiO3 Part I-isolated particles and aggregates. J Raman Spectrosc 38:1288–1299

    Article  Google Scholar 

  • Srdic VV, Winterer M (2006) Comparison of nanosized zirconia synthesized by gas and liquid phase methods. J Eur Ceram Soc 26:3145–3151

    Article  Google Scholar 

  • Tao J, Ma J, Wang Y, Zhu X, Liu J, Jiang X, Lin B, Ren Y (2008) Synthesis of barium titanate nanoparticles via a novel electrochemical route. Mater Res Bull 43:639–644

    Article  Google Scholar 

  • Tashiro S, Arakawa J, Igarashi H (1992) Dynamic characteristics of BaTiO3 ceramic semiconductors with a multilayer structure. Jpn J Appl Phys 31:3102–3107

    Article  Google Scholar 

  • Vijatović MM, Bobić JD, Stojanović BD (2008) History and challenges of barium titanate: Part II. Sci Sinter 40:235–244

    Article  Google Scholar 

  • Winterer M (2002) Nanocrystalline ceramics: synthesis and structure. Springer, Berlin

    Book  Google Scholar 

  • Winterer M, Srdic VV, Djenadic R, Kompch A, Weirich TE (2007) Chemical vapor synthesis of nanocrystalline perovskites using laser flash evaporation of low volatility solid precursors. Rev Sci Instrum 78:123903

    Article  Google Scholar 

  • Yang G, Yue Z, Zhao J, Wen H, Wang X, Li L (2006) Dielectric behaviour of BaTiO3-based ceramic multilayer capacitors under high dc bias field. J Phys D 39:3702–3707

    Article  Google Scholar 

  • Yashima M, Hoshina T, Ishimura D, Kobayashi S, Nakamura W, Tsurumi T, Wada S (2005) Size effect on the crystal structure of barium titanate nanoparticles. J Appl Phys 98:014313

    Article  Google Scholar 

  • Zhang WH, Chen L, Tao YT, Zhang WH, Chen J, Zhang YX (2011) Raman study of barium titanate with oxygen vacancies. Phys B 406:4630–4633

    Article  Google Scholar 

Download references

Acknowledgments

B. M. L. acknowledges the support of the German Academic Exchange Service Fellowship (DAAD A/11/84495) and a possibility to conduct research in the Joint Research Laboratory Nanomaterials, Technical University Darmstadt and Karlsruhe Institute of Technology, Darmstadt, Germany, for a period of 6 months. Authors kindly thank Christoph Loho from TU Darmstadt for the measurements of Raman Spectroscopy and Christian Kübel from KIT (Karlsruhe Nano Micro Facility (KNMF)) for TEM characterization of the samples. Financial support from Ministry of Science of Republic of Serbia (project III45021) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana Mojić-Lanté.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojić-Lanté, B., Djenadic, R., Srdić, V.V. et al. Direct preparation of ultrafine BaTiO3 nanoparticles by chemical vapor synthesis. J Nanopart Res 16, 2618 (2014). https://doi.org/10.1007/s11051-014-2618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2618-5

Keywords

Navigation