Skip to main content
Log in

Preparation of tetragonal barium titanate nanopowders by microwave solid-state synthesis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tetragonal-phase BaTiO3 powders of particle size 370 nm were synthesized by microwave sintering at 850 °C. The raw materials were BaCO3, TiO2, and alanine. SiC microspheres were used as microwave conductors. The effects of the holding time, sintering aids, and SiC addition on the preparation of BaTiO3 were investigated. The results indicate that the addition of SiC as a microwave acceptor leads to formation of microwave micro-regions. This enables uniform heating of the raw materials and decreases the calcination temperature needed to obtain BaTiO3. Alanine coordinates with Ba, and this loosens the metal–CO3 bond and promotes separation of CO2, decreases the BaCO3 decomposition temperature, and provides a higher nucleation site density. It gives an idea about the microwave solid-state synthesis of BaTiO3 powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Luo, S. Yuan, X. Pan, C. Zhang, S. Du, Y. Liu, ACS Appl. Mater. Inter. (2017). https://doi.org/10.1021/acsami.7b02580

    Article  Google Scholar 

  2. Y. Wang, K. Miao, W. Wang, Y. Qin, J. Eur. Ceram. Soc. (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.035

    Article  Google Scholar 

  3. N. Liu, W. Zhao, J. Rong, J. Am. Ceram. Soc. (2018). https://doi.org/10.1111/jace.15339

    Article  Google Scholar 

  4. J. Li, K. Inukai, Y. Takahashi, A. Tsuruta, W. Shin, J. Asian Ceram. Soc. (2018). https://doi.org/10.1016/j.jascer.2017.05.001

    Article  Google Scholar 

  5. P. Xue, Y. Hu, W. Xia, H. Wu, X. Zhu, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jascer.2017.05.001

    Article  Google Scholar 

  6. J. Li, K. Inukai, Y. Takahashi, A. Tsuruta, W. Shin, Materials (2018). https://doi.org/10.3390/ma11050712

    Article  Google Scholar 

  7. Z. Zhu, W. Zhu, Curr. Appl. Phys. (2018). https://doi.org/10.1016/j.cap.2018.04.016886-892

    Article  Google Scholar 

  8. R. Ashiri, RSC Adv. (2016). https://doi.org/10.1039/c5ra22942a

    Article  Google Scholar 

  9. S.-S. Ryu, D.-H. Yoon, J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-007-1537-6

    Article  Google Scholar 

  10. Y.A. Huang, B. Lu, D.D. Li, Z.H. Tang, Y.B. Yao, T. Tao, B. Liang, S.G. Lu, Ceram Int. (2017). https://doi.org/10.1016/j.ceramint.2017.09.027

    Article  Google Scholar 

  11. J. Li, K. He, Z.-H. Zhou, H. Huang, L. Zhang, C.-G. Lou, H.-Y. Yu, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.07.229

    Article  Google Scholar 

  12. H. Jiao, K. Zhao, R. Shi, L. Ma, Y. Tang, Cryst. Res. Technol. (2018). https://doi.org/10.1002/crat.201700107

    Article  Google Scholar 

  13. A.Z. Simões, F. Moura, T.B. Onofre, M.A. Ramirez, J.A. Varela, E. Longo, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.08.143

    Article  Google Scholar 

  14. K. Hongo, S. Kurata, A. Jomphoak, M. Inada, K. Hayashi, R. Maezono, Inorg. Chem. (2018). https://doi.org/10.1021/acs.inorgchem.8b00381

    Article  Google Scholar 

  15. S. Ahda, S. Misfadhila, P. Parikin, T.Y.S.P. Putra, IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899x/176/1/012048

    Article  Google Scholar 

  16. S.-S. Ryu, J. Kore. Powd. Met. Inst. (2012). https://doi.org/10.4150/kpmi.2012.19.4.310

    Article  Google Scholar 

  17. C. Ando, H. Kishi, H. Oguchi, M. Senna, J. Am. Ceram. Soc. (2006). https://doi.org/10.1111/j.1551-2916.2006.00917.x

    Article  Google Scholar 

  18. R. Yanagawa, M. Senna, C. Ando, H. Chazono, H. Kishi, J. Am. Ceram. Soc. (2007). https://doi.org/10.1111/j.1551-2916.2007.01498.x

    Article  Google Scholar 

  19. O.G. Gromov, A.P. Kuzmin, G.B. Kunshina, R.M. Usmanov, E.P. Lokshin, Russ. J. Appl. Chem. (2008). https://doi.org/10.1134/s1070427208110025

    Article  Google Scholar 

  20. R. Rotaru, C. Peptu, P. Samoila, V. Harabagiu, J. Am. Ceram. Soc. (2017). https://doi.org/10.1111/jace.15003

    Article  Google Scholar 

  21. H. Itasaka, K.I. Mimura, K. Kato, Nanomaterials (2018). https://doi.org/10.3390/nano8090739

    Article  Google Scholar 

  22. M. Bi, Y. Hao, J. Zhang, M. Lei, K. Bi, Nanoscale (2017). https://doi.org/10.1039/c7nr05212j

    Article  Google Scholar 

  23. T.-T. Lee, C.-Y. Huang, C.-Y. Chang, I.K. Cheng, C.-L. Hu, C.-Y. Su, C.-T. Lee, M. Fujimoto, Int. Appl. Ceram. Technol. (2013). https://doi.org/10.1111/ijac.12072

    Article  Google Scholar 

  24. T.M. Khan, M. Zakria, R.I. Shakoor, S. Hussain, Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-9766-7

    Article  Google Scholar 

  25. L. Zhang, J.X. Wen, Z.X. Zhang, J. Yang, H. Huang, Q.Y. Hu, H.R. Zhuang, H.Y. Yu, Phys. B (2019). https://doi.org/10.1016/j.physb.2019.02.002

    Article  Google Scholar 

  26. Y. Zhang, L. Wang, D. Xue, Powder Technol. (2012). https://doi.org/10.1016/j.powtec.2011.11.043

    Article  Google Scholar 

  27. H.-W. Lee, S. Moon, C.-H. Choi, D.K. Kim, S.J. Kang, J. Am. Ceram. Soc. (2012). https://doi.org/10.1111/j.1551-2916.2012.05085.x

    Article  Google Scholar 

  28. K. Tsuzuku, M. Couzi, J. Mater. Sci. (2012). https://doi.org/10.1007/s10853-012-6310-9

    Article  Google Scholar 

  29. J.C. Niepce, G. Thomas, Solid State lonics. (1990). https://doi.org/10.1016/0167-2738(90)90472-4

    Article  Google Scholar 

  30. M.T. Buscaglia, M. Bassoli, V. Buscaglia, R. Alessio, J. Am. Ceram. Soc. (2005). https://doi.org/10.1111/j.1551-2916.2005.00451.x

    Article  Google Scholar 

  31. C. Ando, H. Chazono, H. Kishi, Key Eng. Mater. (2004). https://doi.org/10.4028/www.scientific.net/KEM.269.161

    Article  Google Scholar 

  32. C. Ando, K. Tsuzuku, T. Kobayashi, H. Kishi, S. Kuroda, M. Senna, J. Mater. Sci. Mater. Electron. (2008). https://doi.org/10.1007/s10854-008-9804-0

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Science and Technology Major Project of Guangxi (AA18118001), Guangxi Key Laboratory of Information Materials Foundation (No. 171021-Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisheng Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, H., Zhu, G., Xu, H. et al. Preparation of tetragonal barium titanate nanopowders by microwave solid-state synthesis. Appl. Phys. A 126, 294 (2020). https://doi.org/10.1007/s00339-020-03472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03472-y

Keywords

Navigation