Skip to main content
Log in

New polymorphisms in human MEF2C gene as potential modifier of hypertrophic cardiomyopathy

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hypertrophic cardiomyopathy is caused by mutations in genes encoding sarcomeric proteins. Its variable phenotype suggests the existence of modifier genes. Myocyte enhancer factor (MEF) 2C could be important in this process given its role as transcriptional regulator of several cardiac genes. Any variant affecting MEF2C expression and/or function may impact on hypertrophic cardiomyopathy clinical manifestations. In this candidate gene approach, we screened 209 Caucasian hypertrophic cardiomyopathy patients and 313 healthy controls for genetic variants in MEF2C gene by single-strand conformation polymorphism analysis and direct sequencing. Functional analyses were performed with transient transfections of luciferase reporter constructions. Three new variants in non-coding exon 1 were found both in patients and controls with similar frequencies. One-way ANOVA analyses showed a greater left ventricular outflow tract obstruction (p = 0.011) in patients with 10C+10C genotype of the c.-450C(8_10) variant. Moreover, one patient was heterozygous for two rare variants simultaneously. This patient presented thicker left ventricular wall than her relatives carrying the same sarcomeric mutation. In vitro assays additionally showed a slightly increased transcriptional activity for both rare MEF2C alleles. In conclusion, our data suggest that 15 bp-deletion and C-insertion in the 5′UTR region of MEF2C could affect hypertrophic cardiomyopathy, potentially by affecting expression of MEF2C and therefore, the expression of their target cardiac proteins that are implicated in the hypertrophic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276

    Article  PubMed  Google Scholar 

  2. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 93:841–842

    Article  CAS  PubMed  Google Scholar 

  3. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92:785–789

    Article  CAS  PubMed  Google Scholar 

  4. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232

    Article  PubMed  Google Scholar 

  5. Marian AJ (2001) On genetic and phenotypic variability of hypertrophic cardiomyopathy: nature versus nurture. J Am Coll Cardiol 38:331–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92:1079–1088

    Article  CAS  PubMed  Google Scholar 

  7. Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14:167–196

    Article  CAS  PubMed  Google Scholar 

  8. Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu J, Gong NL, Bodi I, Aronow BJ, Backx PH, Molkentin JD (2006) Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. J Biol Chem 281:9152–9162

    Article  CAS  PubMed  Google Scholar 

  10. van Oort RJ, van Rooij E, Bourajjaj M, Schimmel J, Jansen MA, van der Nagel R, Doevendans PA, Schneider MD, van Echteld CJ, De Windt LJ (2006) MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in calcineurin-induced heart failure. Circulation 114:298–308

    Article  PubMed  Google Scholar 

  11. Munoz JP, Collao A, Chiong M, Maldonado C, Adasme T, Carrasco L, Ocaranza P, Bravo R, Gonzalez L, Diaz-Araya G, Hidalgo C, Lavandero S (2009) The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling. Biochem Biophys Res Commun 388:155–160

    Article  CAS  PubMed  Google Scholar 

  12. Konno T, Chen D, Wang L, Wakimoto H, Teekakirikul P, Nayor M, Kawana M, Eminaga S, Gorham JM, Pandya K, Smithies O, Naya FJ, Olson EN, Seidman JG, Seidman CE (2010) Heterogeneous myocyte enhancer factor-2 (Mef2) activation in myocytes predicts focal scarring in hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 107:18097–18102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, Shah PM, Spencer WH 3rd, Spirito P, Ten Cate FJ, Wigle ED (2003) American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. Eur Heart J 24:1965–1991

    Article  PubMed  Google Scholar 

  14. Garcia-Castro M, Coto E, Reguero JR, Berrazueta JR, Alvarez V, Alonso B, Sainz R, Martin M, Moris C (2009) Mutations in sarcomeric genes MYH7, MYBPC3, TNNT2, TNNI3, and TPM1 in patients with hypertrophic cardiomyopathy. Rev Esp Cardiol 62:48–56

    Article  PubMed  Google Scholar 

  15. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodriguez I, Coto E, Reguero JR, Gonzalez P, Andres V, Lozano I, Martin M, Alvarez V, Moris C (2007) Role of the CDKN1A/p21, CDKN1C/p57, and CDKN2A/p16 genes in the risk of atherosclerosis and myocardial infarction. Cell Cycle 6:620–625

    Article  CAS  PubMed  Google Scholar 

  17. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12

    Article  Google Scholar 

  18. Friedrich FW, Bausero P, Sun Y, Treszl A, Kramer E, Juhr D, Richard P, Wegscheider K, Schwartz K, Brito D, Arbustini E, Waldenstrom A, Isnard R, Komajda M, Eschenhagen T, Carrier L (2009) A new polymorphism in human calmodulin III gene promoter is a potential modifier gene for familial hypertrophic cardiomyopathy. Eur Heart J 30:1648–1655

    Article  CAS  PubMed  Google Scholar 

  19. Minamisawa S, Sato Y, Tatsuguchi Y, Fujino T, Imamura S, Uetsuka Y, Nakazawa M, Matsuoka R (2003) Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem Biophys Res Commun 304:1–4

    Article  CAS  PubMed  Google Scholar 

  20. Medin M, Hermida-Prieto M, Monserrat L, Laredo R, Rodriguez-Rey JC, Fernandez X, Castro-Beiras A (2007) Mutational screening of phospholamban gene in hypertrophic and idiopathic dilated cardiomyopathy and functional study of the PLN -42 C>G mutation. Eur J Heart Fail 9:37–43

    Article  CAS  PubMed  Google Scholar 

  21. Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, Nistri S, Cecchi F, Udelson JE, Maron BJ (2006) Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 114:2232–2239

    Article  PubMed  Google Scholar 

  22. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, Cecchi F, Maron BJ (2003) Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med 348:295–303

    Article  PubMed  Google Scholar 

  23. Song J, Ugai H, Nakata-Tsutsui H, Kishikawa S, Suzuki E, Murata T, Yokoyama KK (2003) Transcriptional regulation by zinc-finger proteins Sp1 and MAZ involves interactions with the same cis-elements. Int J Mol Med 11:547–553

    CAS  PubMed  Google Scholar 

  24. Kaplan J, Calame K (1997) The ZiN/POZ domain of ZF5 is required for both transcriptional activation and repression. Nucleic Acids Res 25:1108–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris JF, Rauscher FJ 3rd, Davis B, Klemsz M, Xu D, Tenen D, Hromas R (1995) The myeloid zinc finger gene, MZF-1, regulates the CD34 promoter in vitro. Blood 86:3640–3647

    CAS  PubMed  Google Scholar 

  26. Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266:19867–19870

    CAS  PubMed  Google Scholar 

  27. Dahlqvist J, Klar J, Tiwari N, Schuster J, Torma H, Badhai J, Pujol R, van Steensel MA, Brinkhuizen T, Gijezen L, Chaves A, Tadini G, Vahlquist A, Dahl N (2010) A single-nucleotide deletion in the POMP 5′ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am J Hum Genet 86:596–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Badhai J, Schuster J, Gidlof O, Dahl N (2011) 5′UTR variants of ribosomal protein S19 transcript determine translational efficiency: implications for Diamond-Blackfan anemia and tissue variability. PLoS One 6:e17672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lombardi R, Betocchi S, Losi MA, Tocchetti CG, Aversa M, Miranda M, D’Alessandro G, Cacace A, Ciampi Q, Chiariello M (2003) Myocardial collagen turnover in hypertrophic cardiomyopathy. Circulation 108:1455–1460

    Article  CAS  PubMed  Google Scholar 

  30. Chiu C, Tebo M, Ingles J, Yeates L, Arthur JW, Lind JM, Semsarian C (2007) Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 43:337–343

    Article  CAS  PubMed  Google Scholar 

  31. Poirier O, Nicaud V, McDonagh T, Dargie HJ, Desnos M, Dorent R, Roizes G, Schwartz K, Tiret L, Komajda M, Cambien F (2003) Polymorphisms of genes of the cardiac calcineurin pathway and cardiac hypertrophy. Eur J Hum Genet 11:659–664

    Article  CAS  PubMed  Google Scholar 

  32. Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, McKenna WJ, Ostman-Smith I, Clarke K, Watkins H (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41:1776–1782

    Article  CAS  PubMed  Google Scholar 

  33. Coviello DA, Maron BJ, Spirito P, Watkins H, Vosberg HP, Thierfelder L, Schoen FJ, Seidman JG, Seidman CE (1997) Clinical features of hypertrophic cardiomyopathy caused by mutation of a “hot spot” in the alpha-tropomyosin gene. J Am Coll Cardiol 29:635–640

    Article  CAS  PubMed  Google Scholar 

  34. Sipola P, Lauerma K, Jaaskelainen P, Laakso M, Peuhkurinen K, Manninen H, Aronen HJ, Kuusisto J (2005) Cine MR imaging of myocardial contractile impairment in patients with hypertrophic cardiomyopathy attributable to Asp175Asn mutation in the alpha-tropomyosin gene. Radiology 236:815–824

    Article  PubMed  Google Scholar 

  35. Ortlepp JR, Vosberg HP, Reith S, Ohme F, Mahon NG, Schroder D, Klues HG, Hanrath P, McKenna WJ (2002) Genetic polymorphisms in the renin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: a study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart 87:270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coto E, Palacin M, Martin M, Castro MG, Reguero JR, Garcia C, Berrazueta JR, Moris C, Morales B, Ortega F, Corao AI, Diaz M, Tavira B, Alvarez V (2010) Functional polymorphisms in genes of the Angiotensin and Serotonin systems and risk of hypertrophic cardiomyopathy: AT1R as a potential modifier. J Transl Med 8:64

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hinits Y, Hughes SM (2007) Mef2s are required for thick filament formation in nascent muscle fibres. Development 134:2511–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pereira AH, Clemente CF, Cardoso AC, Theizen TH, Rocco SA, Judice CC, Guido MC, Pascoal VD, Lopes-Cendes I, Souza JR, Franchini KG (2009) MEF2C silencing attenuates load-induced left ventricular hypertrophy by modulating mTOR/S6K pathway in mice. PLoS One 4:e8472

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the patients and their families that consent to participate in this study. This work was supported by grants from the Spanish Fondo de Investigaciones Sanitarias-Fondos FEDER European Union (FIS 07/0659, 10/00173), and Red de Investigación Renal-REDinREN (RD06/0016) from Instituto de Salud Carlos III. CAM and IR were financially supported by the Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología (FICYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Rodriguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso-Montes, C., Naves-Diaz, M., Fernandez-Martin, J.L. et al. New polymorphisms in human MEF2C gene as potential modifier of hypertrophic cardiomyopathy. Mol Biol Rep 39, 8777–8785 (2012). https://doi.org/10.1007/s11033-012-1740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1740-7

Keywords

Navigation