Skip to main content
Log in

Phylogenetic study of Oryzoideae species and related taxa of the Poaceae based on atpB-rbcL and ndhF DNA sequences

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oryzoideae (Poaceae) plants have economic and ecological value. However, the phylogenetic position of some plants is not clear, such as Hygroryza aristata (Retz.) Nees. and Porteresia coarctata (Roxb.) Tateoka (syn. Oryza coarctata). Comprehensive molecular phylogenetic studies have been carried out on many genera in the Poaceae. The different DNA sequences, including nuclear and chloroplast sequences, had been extensively employed to determine relationships at both higher and lower taxonomic levels in the Poaceae. Chloroplast DNA ndhF gene and atpB-rbcL spacer were used to construct phylogenetic trees and estimate the divergence time of Oryzoideae, Bambusoideae, Panicoideae, Pooideae and so on. Complete sequences of atpB-rbcL and ndhF were generated for 17 species representing six species of the Oryzoideae and related subfamilies. Nicotiana tabacum L. was the outgroup species. The two DNA datasets were analyzed, using Maximum Parsimony and Bayesian analysis methods. The molecular phylogeny revealed that H. aristata (Retz.) Nees was the sister to Chikusichloa aquatica Koidz. Moreover, P. coarctata (Roxb.) Tateoka was in the genus Oryza. Furthermore, the result of evolution analysis, which based on the ndhF marker, indicated that the time of origin of Oryzoideae might be 31 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gaut B (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  2. Shantz H (1954) The place of grasslands in the earth’s cover. Ecology 35:143–145

    Article  Google Scholar 

  3. Aggarwal R, Brar D, Nandi S et al (1999) Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor Appl Genet 98:1320–1328

    Article  CAS  Google Scholar 

  4. Huelsenbeck J, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  5. Clark L, Zhang W, Wendel J (1995) A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst Bot 20:436–460

    Article  Google Scholar 

  6. Crepet W, Feldman G (1991) The earliest remains of grasses in the fossil record. Am J Bot 78:1010–1014

    Article  Google Scholar 

  7. Ehrendorfer F, Manen J, Natali A (1994) cpDNA intergene sequences corroborate restriction site data for reconstructing Rubiaceae phylogeny. Plant Syst Evol 190:245–248

    Article  CAS  Google Scholar 

  8. Manen J, Savolainen V, Simone P (1994) The atpB and rbcL promoters in plastid DNAs of a wide dicot range. J Mol Evol 38:577–582

    Article  PubMed  CAS  Google Scholar 

  9. Golenberg EM, Clegg MT, Durbin ML (1993) Evolution of a noncoding region of the chloroplast genome. Mol Phylogenet Evol 2:52–64

    Article  PubMed  CAS  Google Scholar 

  10. Manen J, Natali A, Ehrendorfer F (1994) Phylogeny of Rubiaceae–Rubieae inferred from the sequence of a cpDNA intergene region. Plant Syst Evol 190:195–211

    Article  CAS  Google Scholar 

  11. Savolainen V, Spichiger R, Manen J (1997) Polyphyletism of Celastrales deduced from a chloroplast noncoding DNA region. Mol Phylogenet Evol 7:145–157

    Article  PubMed  CAS  Google Scholar 

  12. Borsch T, Quandt D (2009) Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA. Plant Syst Evol 282:169–199

    Article  CAS  Google Scholar 

  13. Olmstead R, Sweere J, Wolfe K (1993) Ninety extra nucleotide in ndhF gene of tobacco chloroplast DNA: a summary of revisions to the 1986 genome sequence. Plant Mol Biol 22:1191–1193

    Article  PubMed  CAS  Google Scholar 

  14. Sugiura M (1989) The chloroplast chromosomes in land plants. Annu Rev Cell Biol 5:51–70

    Article  PubMed  CAS  Google Scholar 

  15. Wolfe K (1991) Protein-coding genes in chloroplast DNA: compilation of nucleotide sequences, data base entries, and rates of molecular evolution. Academic Press, New York

    Google Scholar 

  16. Smith J, Carroll C (1997) Phylogenetic relationships of the Episcieae (Gesneriaceae) based on ndhF sequences. Syst Bot 22:713–724

    Article  Google Scholar 

  17. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  18. Thompson J, Gibson T, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  19. Swofford D (2002) PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland

    Google Scholar 

  20. Kluge A, Farris J (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  21. Farris J (1989) The retention index and the rescaled consistency index. Cladistics 5:417–419

    Article  Google Scholar 

  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  23. Li H, Yang J, Li D, Mller M et al (2010) A molecular phylogenetic study of Hemsleya (Cucurbitaceae) based on ITS, rpl16, trnH-psbA, and trnL DNA sequences. Plant Syst Evol 285:23–32

    Article  CAS  Google Scholar 

  24. Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  PubMed  CAS  Google Scholar 

  25. Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818

    Article  PubMed  CAS  Google Scholar 

  26. Tamura K, Dudley J, Nei M (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  27. Linder H (1987) The evolutionary history of the Poales/Restionales: a hypothesis. Kew Bull 42:297–318

    Article  Google Scholar 

  28. Tateoka T (1965) Porteresia, a new genus of Gramineae. Bull Nat Sci Mus, Tokyo 8:405–406

    Google Scholar 

  29. Ge S, Sang T, Lu B, Hong D (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci USA 96(25):14400–14405

    Article  PubMed  CAS  Google Scholar 

  30. Ge S, Sang T, Lu B, Hong D (2001) Phylogeny of the genus oryza as revealed by molecular approaches. Rice Genet 4:89

    Article  Google Scholar 

  31. Hillis D, Bull J (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  32. Joshi S, Gupta V, Aggarwal R et al (2000) Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet 100:1311–1320

    Article  CAS  Google Scholar 

  33. Zhang S, Second G (1989) Phylogenetic analysis of the tribe Oryzeae: total chloroplast DNA restriction fragment analysis (a preliminary report). Rice Genet Newsl 6:76–80

    Google Scholar 

  34. Tateoka T (1963) Relationship between oryzeae and ehrharteae, with special reference to leaf anatomy and histology. Bot Gaz 124:264–270

    Article  Google Scholar 

  35. Ge S, Li A, Lu BR (2002) A phylogeny of the rice tribe Oryzeae (Poaceae) based on matK sequence data. Am J Bot 89(12):1967–1972

    Article  PubMed  Google Scholar 

  36. Jacobs B, Kingston J, Jacobs L (1999) The origin of grass-dominated ecosystems. Ann Mo Bot Gard 86:590–643

    Article  Google Scholar 

  37. Kellogg E (2001) Evolutionary history of the grasses. Plant Physiol 125(3):1198–1205

    Article  PubMed  CAS  Google Scholar 

  38. Thomasson J (1978) Epidermal patterns of the lemma in some fossil and living grasses and their phylogenetic significance. Science 199(4332):975–977

    Article  PubMed  CAS  Google Scholar 

  39. Thomasson J (1980) Archaeoleersia nebraskensis (Gramineae-Oryzeae), a new fossil grass from the late tertiary of Nebraska. Am J Bot 67:876–882

    Article  Google Scholar 

  40. Litke R (1968) Über den Nachweis tertiarer Gramineen. Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin 10:464–471

    Google Scholar 

  41. Liu ZH, Chen SL (2010) ER regulates an evolutionarily conserved apoptosis pathway. Biochem Biophys Res Commun 400(1):34–38

    Google Scholar 

  42. Liu ZH, Sun X (2008) Coronavirus phylogeny based on base-base correlation. Int J Bioinform Res Appl 4(2):211–220

    Google Scholar 

  43. Liu ZH, Meng J, Sun X (2008) A novel feature-based method for whole genome phylogenetic analysis without alignment: application to HEV genotyping and subtyping. Biochem Biophys Res Commun 368(2):223–230

    Google Scholar 

  44. Liu ZH, Jiao D, Sun X (2005) Classifying genomic sequences by sequence feature analysis. Genomics Proteomics Bioinformatics 3(4):201–205

    Google Scholar 

Download references

Acknowledgments

This work was funded by National Natural Science Foundation of China (81102746), Beijing Natural Science Foundation (5113033), Scientific Research Foundation of the State Human Resource Ministry and the Education Ministry for Returned Chinese Scholars, New Star Project of Peking Union Medical College, Youth Foundation of Peking Union Medical College, the Research Fund for the Doctoral Program of Higher Education (20111106120028), “Major Drug Discovery” major science and technology research “12nd Five-Year Plan” (2012ZX09301-002-001) China Medical Board of New York (A2009001) granted to Zhihua Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Liu.

Additional information

X. Zeng, Z. Yuan and X. Tong have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Yuan, Z., Tong, X. et al. Phylogenetic study of Oryzoideae species and related taxa of the Poaceae based on atpB-rbcL and ndhF DNA sequences. Mol Biol Rep 39, 5737–5744 (2012). https://doi.org/10.1007/s11033-011-1383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1383-0

Keywords

Navigation