Skip to main content
Log in

An efficient catalytic system based on 7,8-dihydroxy-4-methylcoumarin and copper(II) for the click synthesis of diverse 1,4-disubstituted-1,2,3-triazoles under green conditions

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this work, the combination of 7,8-dihydroxy-4-methyl coumarin (DHMC) as a novel bidentate O,O-chelating agent and copper(II) acetate monohydrate (2:1 molar ratio) has been found to form an efficient catalytic system. This catalyst provided good to excellent yields in the multi-component click synthesis of 1,4-disubstituted-1,2,3-triazoles by using various structurally diverse organic halides, different non-activated terminal alkynes, and sodium azide. This catalytic system eliminates the need for the isolation of the hazardous azide intermediates which are generated in situ. The reaction is carried out in aqueous phase at room temperature and it can be accelerated by sonication or by increasing the reaction temperature. Moreover, the reaction can be performed in large scale. It is noteworthy that DHMC is commercially available and that it can be easily synthesized with low cost materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Dehne H (1994) In: Methoden der Organischen Chemie (Houben-Weyl), (Ed.: Schumann, E.), Thieme, Stuttgart, E 8d:305–405.

  2. Tornøe CW, Christensen C (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. doi:10.1021/jo011148j

    Article  PubMed  Google Scholar 

  3. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 114:2708–2711. doi:10.1002/1521-3757(20020715)114:14<2708:AID-ANGE2708>3.0.CO;2-0

  4. Siemsen P, Livingston RC, Diederich F (2000) Acetylenic coupling: a powerful tool in molecular construction. Angew Chem Int Ed 39:2632–2657. doi:10.1002/1521-3773(20000804)39:15<2632:AID-ANIE2632>3.0.CO;2-F

  5. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127:210–216. doi:10.1021/ja0471525

    Article  CAS  PubMed  Google Scholar 

  6. Quader S, Boyd SE, Jenkins ID, Houston TA (2007) Multisite modification of neomycin B: combined mitsunobu and click chemistry approach. J Org Chem 72:1962–1979. doi:10.1021/jo0620967

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura T, Terashima T, Ogata K, Fukuzawa S (2011) Copper(I) 1,2,3-triazol-5-ylidene complexes as efficient catalysts for click reactions of azides with alkynes. Org Lett 13:620–623. doi:10.1021/ol102858u

    Article  CAS  PubMed  Google Scholar 

  8. Bénéteau V, Olmos A, Boningari T, Sommer J, Pale P (2010) Zeo-click synthesis: CuI-zeolite-catalyzed one-pot two-step synthesis of triazoles from halides and related compounds. Tetrahedron Lett 51:3673–3736. doi:10.1016/j.tetlet.2010.05.036

    Article  Google Scholar 

  9. Odlo K, André Høydahl E, Vidar Hansen T (2007) One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from terminal acetylenes and in situ generated azides. Tetrahedron Lett 48:2097–2099. doi:10.1016/j.tetlet.2007.01.130

    Article  CAS  Google Scholar 

  10. Namitharan K, Kumarraja M, Pitchumani K (2009) \(\text{ Cu }^{\rm II}\)-hydrotalcite as an efficient heterogeneous catalyst for huisgen [3+2] cycloaddition. Chem Eur J 15:2755–2758. doi: 10.1002/chem.200802384

    Article  CAS  PubMed  Google Scholar 

  11. Sharghi H, Khalifeh R, Doroodmand MM (2009) Copper nanoparticles on charcoal for multicomponent catalytic synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, terminal alkynes and sodium azide in water as a “green” solvent. Adv Synth Catal 351:207–218. doi:10.1002/adsc.200800612

    Article  CAS  Google Scholar 

  12. Alonso F, Moglie Y, Radivoy G, Yus M (2010) Multicomponent synthesis of 1,2,3-triazoles in water catalyzed by copper nanoparticles on activated carbon. Adv Synth Catal 352:3208–3214. doi:10.1002/adsc.201000637

    Article  CAS  Google Scholar 

  13. Alonso F, Moglie Y, Radivoy G, Yus M (2011) Click chemistry from organic halides, diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon. Org Biomol Chem 9:6385–6395. doi:10.1039/C1OB05735A

    Article  CAS  PubMed  Google Scholar 

  14. Alonso F, Moglie Y, Radivoy G, Yus M (2011) Multicomponent click synthesis of 1,2,3-triazoles from epoxides in water catalyzed by copper nanoparticles on activated carbon. J Org Chem 76:8394–8405. doi:10.1021/jo2016339

    Article  CAS  PubMed  Google Scholar 

  15. Alonso F, Moglie Y, Radivoy G, Yus M (2012) Multicomponent click synthesis of potentially biologically active triazoles catalysed by copper nanoparticles on activated carbon in water. Heterocycles 84:1033–1044. doi:10.3987/COM-11-S(P)81

    Article  CAS  Google Scholar 

  16. Alonso F, Moglie Y, Radivoy G, Yus M (2013) Alkenes as azido precursors for the one-pot synthesis of 1,2,3-triazoles catalyzed by copper nanoparticles on activated carbon. J Org Chem 78:5031–5037. doi:10.1021/jo400110m

    Article  CAS  PubMed  Google Scholar 

  17. Sharghi H, Beyzavi MH, Safavi A, Doroodmand MM, Khalifeh R (2009) Immobilization of porphyrinatocopper nanoparticles onto activated multi-walled carbon nanotubes and a study of its catalytic activity as an efficient heterogeneous catalyst for a click approach to the three-component synthesis of 1,2,3-triazoles in water. Adv Synth Catal 351:2391–2410. doi:10.1002/adsc.200900353

    Article  CAS  Google Scholar 

  18. Masuyama Y, Yoshikawa K, Suzuki N, Hara K, Fukuoka A (2011) Hydroxyapatite-supported copper(II)-catalyzed azide-alkyne [\(3+2\)] cycloaddition with neither reducing agents nor bases in water. Tetrahedron Lett 52:6916–6918. doi:10.1016/j.tetlet.2011.10.060

  19. Yamada YMA, Sarkar SM, Uozumi Y (2012) Amphiphilic self-assembled polymeric copper catalyst to parts per million levels: click chemistry. J Am Chem Soc 134:9285–9286. doi:10.1021/ja3036543

    Article  CAS  PubMed  Google Scholar 

  20. Albadi J, Keshavarz M, Shirini F, Vafaie-nezhad M (2012) Copper iodide nanoparticles on poly(4-vinyl pyridine): a new and efficient catalyst for multicomponent click synthesis of 1,4-disubstituted-1,2,3-triazoles in water. Catal Commun 27:17–20. doi:10.1016/j.catcom.2012.05.023

    Article  CAS  Google Scholar 

  21. Anil Kumar BSP, Harsha Vardhan Reddy K, Madhav B, Ramesh K, Nageswar YVD (2012) Magnetically separable \(\text{ CuFe }_{2}\text{ O }_{4}\) nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using ‘click chemistry’. Tetrahedron Lett 53:4595–4599. doi: 10.1016/j.tetlet.2012.06.077

    Article  CAS  Google Scholar 

  22. Lia P, Wanga L, Zhanga Y (2008) \(\text{ SiO }_{2}\)-NHC-Cu(I): an efficient and reusable catalyst for [3+2] cycloaddition of organic azides and terminal alkynes under solvent-free reaction conditions at room temperature. Tetrahedron 64:10825–10830. doi: 10.1016/j.tet.2008.09.021

    Article  Google Scholar 

  23. Sharghi H, Jokar M (2007) Heterocycles 71:2721–2733. doi:10.3987/COM-07-11175

    Article  CAS  Google Scholar 

  24. Patil SA, Unki SN, Kulkarni AD, Naik VH, Badami PS (2011) Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases. J Mol Struct 985:330–338. doi:10.1016/j.molstruc.2010.11.016

    Article  CAS  Google Scholar 

  25. Piskin M, Durmus M, Bulut M (2011) Synthesis, characterization, photophysical and photochemical properties of 7-oxy-3-methyl-4-phenylcoumarin-substituted indium phthalocyanines. Inorg Chim Acta 373:107–116. doi:10.1016/j.ica.2011.03.066

    Article  CAS  Google Scholar 

  26. Datta P, Mukhopadhyay AP, Manna P, Tiekink ERT, Chandra Sil P, Sinha C (2011) Structure, photophysics, electrochemistry, DFT calculation, andin-vitro antioxidant activity of coumarin Schiff base complexes of Group 6 metal carbonyls. J Inorg Biochem 105:577–588. doi:10.1016/j.jinorgbio.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  27. Safaei HR, Shekouhy M, Shirinfeshan A, Rahmanpur S (2012) \(\text{ CaCl }_{2}\) as a bifunctional reusable catalyst: diversity-oriented synthesis of \(4H\)-pyran library under ultrasonic irradiation. Mol Divers 16:669–683. doi: 10.1007/s11030-012-9392-z

    Article  CAS  PubMed  Google Scholar 

  28. Mason TJ (1997) Ultrasound in synthetic organic chemistry. Chem Soc Rev 26:443–451. doi:10.1039/CS9972600443

    Article  CAS  Google Scholar 

  29. Book Review: Leadbeater N E (2003) Practical sonochemistry power ultrasound uses and applications (2nd edition. By Mason T J, Peters D) Angew Chem Int Ed 42:2333–2334. doi:10.1002/anie.200390469

  30. Jiang Y, Chen X, Qu L, Wang J, Yuan J, Chen S, Li X, Qu C (2011) Ultrasonic-assisted synthesis of chrysin derivatives linked with 1,2,3-triazoles by 1,3-dipolar cycloaddition reaction. Ultrason Sonochem 18:527–533. doi:10.1016/j.ultsonch.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  31. Driowya M, Puissant A, Robert G, Auberger P, Benhida R, Bougrin K (2012) Ultrasound-assisted one-pot synthesis of anti-CML nucleosides featuring 1,2,3-triazole nucleobase under iron-copper catalysis. Ultrason Sonochem 19:1132–1138. doi:10.1016/j.ultsonch.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  32. Singh HB, Negi RK, Srivastava S (1981) Binary and ternary complexes of copper(II) with some dihydroxycoumarins. J Chem Sciences 90:141–146. doi:10.1007/BF02843425

    CAS  Google Scholar 

  33. Sharghi H, Hosseini-Sarvari M, Moeini F, Khalifeh R (2010) One-pot, three-component synthesis of 1-(2-hydroxyethyl)-1\(H\)-1,2,3-triazole derivatives by copper-catalyzed 1,3-dipolar cycloaddition of 2-azido alcohols and terminal alkynes under mild conditions in water. Helv Chim Acta 93:435–449. doi: 10.1002/hlca.200900226

    Article  CAS  Google Scholar 

  34. Sharghi H, Hosseini-Sarvari M, Moeini F (2008) Copper-catalyzed one-pot synthesis of benzimidazole derivatives. Can J Chem 86:1044–1051. doi:10.1139/v08-153

    Article  CAS  Google Scholar 

  35. Sharghi H, Khoshnood A, Khalifeh R (2012) Three-component synthesis of propargylamine derivatives via 1,4-dihydroxyanthraquinone-copper(II) complexes as an efficient catalyst under solvent-free conditions. Iran J Sci Tech A1:25–35

    Google Scholar 

  36. Sharghi H, Khoshnood A, Doroodmand MM, Khalifeh R (2012) 1,4-Dihydroxyanthraquinone-copper(II) nanoparticles immobilized on silica gel: a highly efficient, copper scavenger and recyclable heterogeneous nanocatalyst for a click approach to the three-component synthesis of 1,2,3-triazole derivatives in water. J Iran Chem Soc 9:231–250. doi:10.1007/s13738-011-0046-3

    Article  CAS  Google Scholar 

  37. Sharghi H, Khalifeh R, Mansouri SGH, Aberi M, Eskandari MM (2011) Simple, efficient, and applicable route for synthesis of 2-aryl(heteroaryl)-benzimidazoles at room temperature using copper nanoparticles on activated carbon as a reusable heterogeneous catalyst. Catal Lett 141:1845–1850. doi:10.1007/s10562-011-0671-6

    Article  CAS  Google Scholar 

  38. Sharghi H, Khalifeh R, Moeini F, Beyzavi MH, Salimi Beni A, Doroodmand MM (2011) Mannich reaction of secondary amines, aldehydes and alkynes in water using Cu/C nanoparticles as a heterogeneous catalyst. J Iran Chem Soc 8:S89–S103. doi:10.1007/BF03254285

    Article  CAS  Google Scholar 

  39. Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM, Purkhosrow A (2012) Synthesis of vasorelaxaing 1,4-disubstituted 1,2,3-triazoles catalyzed by a 4\(\prime \)-phenyl-2,2\(^{\prime } :6^{\prime },2^{\prime \prime } \)-terpyridine copper(II) complex immobilized on activated multiwalled carbon nanotubes. Asian J Org Chem 1:377–388. doi: 10.1002/ajoc.201200012

    Article  CAS  Google Scholar 

  40. Kuang G-C, Michaels HA, Simmons JT, Clark RJ, Zhu L (2010) Chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Org Chem 75:6540–6548. doi:10.1021/jo101305m

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Campbell-Verduyn LS, Mirfeizi L, Dierckx RA, Elsinga PH, Feringa BL (2009) Phosphoramidite accelerated copper(I)-catalyzed [3+2] cycloadditions of azides and alkynes. Chem Commun 16:2139–2141. doi:10.1039/B822994E

    Article  Google Scholar 

  42. Michaels HA, Zhu L (2011) Ligand-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. Chem Asian J 6:2825–2834

  43. Presolski SI, Hong V, Cho S-H, Finn MG (2010) Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc 132:14570–14576. doi:10.1021/ja105743g

  44. Creaven BS, Egan DA, Karcz D, Kavanagh K, McCann M, Mahon M, Noble A, Thati B, Walsh M (2007) Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid (\(\text{ cdoaH }_{2})\) and 4-methylcoumarin-6,7-dioxyacetic acid (4-MecdoaH\(_{2})\): X-ray crystal structures of [Cu(cdoa)(phen)\(_{2}\)]\(_{8}\cdot \)8H\(_{2}\)O and [Cu(4-Mecdoa)(phen)\(_{2}\)] 13H\(_{2}\)O (phen=1,10-phenanthroline). J Inorg Biochem 101:1108–1119. doi: 10.1016/j.jinorgbio.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  45. Akkurt M, Jarrahpour A, Chermahini MM, Shiri P, Tahirc MN (2013) 4-(1-Methyl-eth-yl)-N-((E)-4-[1-(prop-2-en-1-yl)-1\(H\)-1,2, 3-triazol-4-yl]meth-oxybenzyl-idene)aniline. Acta Cryst E 69:o247. doi:10.1107/S1600536813000755

  46. Akkurt M, Jarrahpour A, Sharghi H, Chermahini MM, Shiri P, Büyükgüngör O (2012) 3,4-Dimeth-oxy-N-((E)-4-[1-(prop-2-en-1-yl)-1\(H\)-1,2,3-triazol-4-yl]meth-oxybenzyl-idene)aniline. Acta Cryst E 68:o2127. doi: 10.1107/S1600536812026761

    Article  CAS  Google Scholar 

  47. Akkurt M, Jarrahpour A, Chermahini MM, Shiri P, Büyükgüngör O (2013) (E)-N-(1,3-Benzodioxol-5-yl)-1-(4-[1-(prop-2-en-1-yl)-1\(H\)-1,2,3-triazol-4-yl]meth-oxyphen-yl)methanimine. Acta Cryst 69(Pt 10):o1576. doi: 10.1107/S1600536813025749

    CAS  Google Scholar 

  48. Akkurt M, Jarrahpour A, Chermahini MM, Shiri P, Özdemir N (2014) (E)-N-(4-[1-(Prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl] methoxybenzyl idene)morpholin-4-amine. Acta Cryst E70:o289–o290. doi:10.1107/S1600536814002827

  49. Alonso F, Moglie Y, Radivoy G, Yus M (2010) Unsupported copper nanoparticles in the 1,3-dipolar cycloaddition of terminal alkynes and azides. Eur J Org Chem 2010:1875–1884. doi:10.1002/ejoc.200901446

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this work by the Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashem Sharghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharghi, H., Shiri, P. & Aberi, M. An efficient catalytic system based on 7,8-dihydroxy-4-methylcoumarin and copper(II) for the click synthesis of diverse 1,4-disubstituted-1,2,3-triazoles under green conditions. Mol Divers 18, 559–575 (2014). https://doi.org/10.1007/s11030-014-9527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9527-5

Keywords

Navigation