Skip to main content
Log in

Modeling the Dynamic Bending of Rigid-Plastic Hybrid Composite Elliptical Plates with a Rigid Insert

  • Published:
Mechanics of Composite Materials Aims and scope

A model of dynamic bending of rigid-plastic hybrid composite elliptical plates with a rigid center and simply supported or clamped contour, subjected to a uniformly distributed short-time intense dynamic load of explosive type is developed. The plates are multilayered and fibrous, with a symmetric distribution of layers with respect to the middle surface. The reinforcing fibers, made of different materials, are located in directions parallel or normal to the plate contour. Various mechanisms of dynamic deformation of the plates are considered. For each mechanism, equations of their dynamic behavior are obtained. Operating conditions of these mechanisms are analyzed. Analytical expressions for evaluating the limit loads, deformation time, and residual deflections are obtained. It is shown that a change in reinforcement parameters significantly affects the bearing capacity and residual deflection of the plates. The solutions proposed can be used in the design of reinforced metal-composite elliptical plates. Numerical examples are given for different reinforcement structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. A. P. Yankovskii, “Viscoplastic dynamics of metal-composite layered-fibrous shells at the action of loads of explosive type. I. Statement of the problem and a solution method,” Маtemat. Metodi Fiz.-Mekh. Polya, 55, No. 2, 119-130 (2012).

    Google Scholar 

  2. O. N. Popov, A. P. Malinovskii, M. O. Moiseenko, and T. A. Тreputneeva, “Calculation of heterogeneous structural beyond the limit of elasticity,” Vestnik TGASU, No. 4, 127-142 (2013).

  3. N. A. Abrosimov, A. V. Elesin, and N. A. Novoseltseva, “Numerical analysis of the effect of reinforcement structure on the dynamic behavior and ultimate deformability of composite shells of revolution,” Mech. Compos. Mater., 50, No. 2, 313-326 (2014). DOI: 10.1007/s11029-014-9409-z.

  4. M. S. Qatu, R.W. Sullivan, and W. Wang, “Recent research advances on the dynamic analysis of composite shells: 2000-2009,” Compos. Struct., 93, 14-31 (2010). DOI:https://doi.org/10.1016/j.compstruct.2010.05.014.

    Article  Google Scholar 

  5. Z. K. Awad, T. Aravinthan, Y. Zhuge, and F. Gonzalez, “A review of optimization techniques used in the design of fibre composite structures for civil engineering applications,” Materials and Des., 33, 534-544 (2012). DOI:https://doi.org/10.1016/j.matdes.2011.04.061.

    Google Scholar 

  6. M. F. Jr. Caliri, A. J. M. Ferreira, and V. Tita, “A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method,” Compos. Struct. (2016). DOI: https://doi.org/10.1016/j.compstruct.2016.02.036.

  7. N. A. Abrosimov and V. G. Bazhenov, Nonlinear Problems of Dynamics of Composite Structures [in Russian], Nizhni Novgorod, Izd. NNGU, 391 p. (2002).

  8. Yu. V. Nemirovskii and T. P. Romanova, “Dynamic plastic damageability of simply and doubly connected elliptic plates,” Prikl. Mekh. Tekhn. Fiz., 43, No. 2, 142-154 (2002).

    Google Scholar 

  9. Yu. V. Nemirovskii and T. P. Romanova, “Deformation of protective planar barriers with technological hatches,” Probl. Prochn., 39, No. 1, 22-38 (2007).

    Google Scholar 

  10. Yu. V. Nemirovskii and T. P. Romanova, “Dynamic deformation of a curvilinear plate with a rigid insert,” Prikl. Mekh. Tekhn. Fiz., 47, No. 2, 126-138 (2006).

    Google Scholar 

  11. T. P. Romanova and Yu. V. Nemirovskii, “Dynamic rigid-plastic deformation of arbitrarily shaped plates,” J. Mech. Mater. Struct., 3, No. 2, 313-334 (2008). DOI: https://doi.org/10.2140/jomms.2008.3.313.

    Article  Google Scholar 

  12. Yu. V. Nemirovskii, “On a condition of plasticity (strength) for a reinforced layer,” Prikl. Mekh. Tekhn. Fiz.,. No. 5, 81-88 (1969).

    Google Scholar 

  13. Yu. V. Nemirovsky and B. S. Resnikoff, “On limit equilibrium of reinforced slabs and effectiveness of their reinforcement,” Archiwum Inzynierii Ladowej, XXI, No. 1, 57-67 (1975).

  14. Yu. V. Nemirovskii and A. P. Yankovskii, “Pecurliarities of viscoplastic deformation of reinforced plates of variable thickness at the action of loads of explosive type,” Prikl. Mekh., 44, No. 2, 85-98 (2008).

    Google Scholar 

  15. Yu. V. Nemirovskii and A. P. Yankovskii, “Viscoplastic dynamics of layered-fibrous plates of variable thickness at the action of loadings of explosive type,” Mekh. Kompoz. Mater. Konstr. 12, No. 4, 484-501 (2006).

    Google Scholar 

  16. Yu. V. Nemirovskii and N. A. Fedorova, Mathematical Modeling of Planar Structures of Reinforced Fibrous Materials [in Russian], Krasnoyarsk, Izd. SFU, 136 p. (2010).

  17. A. A. Savelov, Plane Curves [in Russian], M., Gos. Izd. Fiz. Mat. Liter., 293 p. (1960).

  18. Yu.V. Nemirovskii and T. P. Romanova, “Dynamics of damage of plastic reinforced metal-composite annular plates,” Fundament. Prikl. Sovr. Mekh., Sb. Mater. Konf. Tomsk, April, 12-14, 2011, Tomsk, Tomsk Gos. Univ., 253 - 254 (2011).

  19. Yu.V. Nemirovskii and T. P. Romanova, “Dynamic bending of reinforced regular polygonal plates with a rigid washer under the action of explosive loads,” Sb. Тr. Меzhd. Коnf. Akt. Probl. Prikl. Mat..Inform., Mekh., Voronezh, September, 20-22, 2010, Voronezh. Gos..Univ., 255-269 (2010).

  20. M. I. Erkhov, “Theory of Perfectly Plastic Bodies and Structures [in Russuan], M., Nauka, 1978, 352.

  21. G. Almkvist and B. Berndt, “Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies diary,” Am. Math. Monthly., 95, 585-608 (1988).

    Article  Google Scholar 

  22. H. G. Hopkins, “Some remarks concerning the solution of plastic plate problems upon the yield criterion,” Proc. 9th Int. Cong. Appl. Mech., 6, 448-457 (1957).

  23. Т. P. Romanova, “Load-carrying ability and optimization of three-layer reinforced round plates from different-resistance materials supported along the internal contour,” Probl. Prochn. Plast., 77, No. 3, 286-300 (2015).

    Google Scholar 

  24. A. P. Yankovskii, “Elastic-plastic deformation of the bent reinforced plates with a weakened resistance to transverse shear,” Prikl. Mat. Mekh., 77, iss. 6, 853-876 (2013).

    Google Scholar 

  25. E. Carrera and S. Brischetto, “A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates,” Appl. Mech. Rev., Trans. ASME, 62, No. 1, 010803-1-010803-17 (2009).

    Article  Google Scholar 

  26. V. F. Panin, and Yu. A. Gladkov, “Structures with a Filler [in Russian], - M.: Mekh. Eng., 272 p. (1991).

  27. M. Rezaeifard, S. J. Salami, M. B. Dehkordi, and M. Sadighi, “A new nonlinear model for studying a sandwich panel with thin composite faces and elastic-plastic core,” Thin-Walled Structures, 107, 119-137 (2016). DOI: https://doi.org/10.1016/j.tws.2016.06.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Romanova.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 53, No. 5, pp. 809-828 , September-October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, T.P. Modeling the Dynamic Bending of Rigid-Plastic Hybrid Composite Elliptical Plates with a Rigid Insert. Mech Compos Mater 53, 565–578 (2017). https://doi.org/10.1007/s11029-017-9687-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-017-9687-3

Keywords

Navigation