Skip to main content
Log in

Steady mixed convection flow of Maxwell fluid over an exponentially stretching vertical surface with magnetic field and viscous dissipation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B :

Magnetic field

B 0 :

Value of the magnetic field at x = 0

C fx :

Local skin friction coefficient

c p :

Specific heat at constant pressure

f :

Dimensionless stream function

f′ :

Dimensionless velocity

F(X):

Dimensionless function of X

g :

Acceleration due to gravity

Gb :

Gebhart number

Gr :

Grashof number

Ha :

Hartmann number

k :

Thermal conductivity of the fluid

L :

Characteristic length

Nu x :

Local Nusselt number

Pr :

Prandtl number

Re :

Reynolds number

Re x :

Local Reynolds number

T :

Temperature

T 0 :

Surface temperature at x = 0

\( \bar{T}\left( X \right) \) :

Chebyshev polynomial

\( u, v \) :

Velocity components in x and y directions, respectively

u 0 :

Velocity of the stretching surface at x = 0

u s :

Surface velocity

\( x, y \) :

Distances along and normal to the stretching surface

X :

Dimensionless distance

α :

Thermal diffusivity

β :

Coefficient of thermal expansion

η :

Similarity variable

θ :

Dimensionless temperature

λ :

Dimensionless relaxation parameter of Maxwell fluid

λ * :

Relaxation parameter of Maxwell fluid

λ 1 :

Dimensionless buoyancy parameter

μ :

Fluid viscosity

ν :

Kinematic viscosity

ξ :

Transformed similarity variable

ρ :

Density of the fluid

σ :

Electrical conductivity

ψ :

Stream function

\( s, \infty \) :

Conditions on the surface and in the quiescent fluid, respectively

′:

Prime denotes derivative with respect to η or ξ

ChFDM:

Chebyshev finite difference method

References

  1. Schlichting H, Gersten C (2000) Boundary layer theory, 8th edn. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Rajagopal KR, Gupta AS, Wineman AS (1980) On a boundary layer theory for non-Newtonian fluids. Lett Appl Sci Eng 18:875–883

    MATH  Google Scholar 

  3. Rajagopal KR (1995) Boundary layers in non-linear fluids. In: Monteivo Marques MDP, Rodriques JF (eds) Trends in applications of mathematics to mechanics. Pittman monographs and surveys in pure and applied mathematics, vol 77. Longman, New York, p 209

    Google Scholar 

  4. Davies MH (1966) A note on elastic-viscous boundary layer flows. Z Angew Math Phys 17:189–191

    Article  Google Scholar 

  5. Coleman BD, Noll W (1974) An approximate theorem for functionals with applications in continuum mechanics. Arch Rat Mech Anal 56:355–370

    MathSciNet  Google Scholar 

  6. Liu IC (2004) Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to a transverse magnetic field. Int J Heat Mass Transfer 47:4427–4437

    Article  MATH  Google Scholar 

  7. Cortell R (2006) A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non-Linear Mech 41:78–85

    Article  MATH  Google Scholar 

  8. Cortell R (2006) Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to suction and to a transverse magnetic field. Int J Heat Mass Transfer 49:1851–1856

    Article  MATH  Google Scholar 

  9. Hayat T, Abbas Z, Sajid M, Asghar S (2007) The influence of thermal radiation on MHD flow of a second-grade fluid. Int J Heat Mass Transfer 50:931–941

    Article  MATH  Google Scholar 

  10. Hayat T, Abbas Z, Pop I (2008) Mixed convection in the stagnation point flow adjacent to a vertical surface in a viscoelastic fluid. Int J Heat Mass transfer 51:3200–3206

    Article  MATH  Google Scholar 

  11. Aiboud S, Saouli S (2010) Entropy analysis for viscoelastic magnetohydrodynamic flow over a stretching sheet. Int J Non-Linear Mech 45:482–489

    Article  Google Scholar 

  12. Beard DW, Walters K (1964) Elastico-viscous boundary layer flows Part 1. Two dimensional flow near a stagnation point. Proc Cambridge Philos Soc 60:667–674

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Garg VK, Rajagopal KR (1990) Stagnation-point flow of non-Newtonian fluid. Mech Res Commun 17:415–421

    Article  MATH  MathSciNet  Google Scholar 

  14. Pakdemirli M, Suhubi ES (1992) Similarity solutions of boundary layer equations for second-order fluids. Int J Eng Sci 30:611–629

    Article  MATH  MathSciNet  Google Scholar 

  15. Ariel PD (1992) A hybrid method for computing the flow of viscoelastic fluids. Int J Numer Methods Fluids 14:757–774

    Article  MATH  Google Scholar 

  16. Fosdick RL, Rajagopal KR (1979) Anomalous features in the model of second-order fluids. Arch Rat Mech Anal 70:145–152

    Article  MATH  MathSciNet  Google Scholar 

  17. Dunn JE, Rajagopal KR (1995) Fluids of differential type: critical review and thermodynamic analysis. Int J Eng Sci 33:689–729

    Article  MATH  MathSciNet  Google Scholar 

  18. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1 and 2, 2nd edn. Wiley, New York

    Google Scholar 

  19. Rao IJ, Rajagopal KR (2007) On a new interpretation of the classical Maxwell model. Mech Res Commun 34:509–514

    Article  MATH  MathSciNet  Google Scholar 

  20. Sadeghy K, Sharifi M (2004) Blasius flow of viscoelastic fluid: a numerical approach. Int J Appl Mech 9:399–411

    MATH  Google Scholar 

  21. Sadeghy K, Najafi AH, Saffaripour M (2005) Sakiadis flow of an upper-convected Maxwell fluid. Int J Non-Linear Mech 40:1220–1228

    Article  MATH  Google Scholar 

  22. Renardy M (1997) High Weissenberg number boundary layers for the upper convected Maxwell fluid. J Non-Newtonian Fluid Mech 68:125–132

    Article  Google Scholar 

  23. Hagen T, Renardy M (1997) Boundary layer analysis of the Phan-Tien Tanner and Giesekus model in high Weissenberg number. J Non-Newtonian Fluid Mech 73:181–189

    Article  Google Scholar 

  24. Phan-Thien N (1983) Plane and axisymmetric stagnation flow of a Maxwellian fluid. Rheol Acta 22:127–130

    Article  MATH  Google Scholar 

  25. Hayat T, Sajid M (2007) Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid. Int J Eng Sci 45:393–401

    Article  MATH  MathSciNet  Google Scholar 

  26. Sadeghy K, Hajibeygi H, Taghavi SM (2006) Stagnation-point flow of upper-convected Maxwell fluid. Int J Non-Linear Mech 41:1242–1247

    Article  Google Scholar 

  27. Hayat T, Abbas Z, Sajid M (2009) MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface. Chaos, Solitans Fractals 39:840–848

    Article  MATH  ADS  Google Scholar 

  28. Renardy M (2010) On the high Weissenberg number limit of the upper-convected Maxwell fluid. J Non-Newtonian Fluid Mech 165:70–74

    Article  MATH  Google Scholar 

  29. Kumari M, Nath G (2009) Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field. Int J Non-Linear Mech 44:1048–1055

    Article  MATH  Google Scholar 

  30. Hayat T, Qasim M (2010) Influence of thermal radiation and Joule heating on MHD flow of a Maxwell fluid in the presence of thermophoresis. Int J Heat Mass Transfer 53:4780–4788

    Article  MATH  Google Scholar 

  31. Hayat T, Sajjad R, Abbas Z, Sajid M, Hendi AA (2011) Radiation effects on MHD flow of Maxwell fluid in a channel with porous medium. Int J Heat Mass Transfer 54:854–862

    Article  MATH  Google Scholar 

  32. Abel MS, Tawade JV, Nandeppanavar MM (2012) MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica 47:385–393

    Article  MathSciNet  Google Scholar 

  33. Prasad KV, Sujatha A, Vajravelu K, Pop I (2012) MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermophysical properties. Meccanica 47:1425–1439

    Article  MathSciNet  Google Scholar 

  34. Ali ME (1995) On thermal boundary layer on a power-law stretched surface with suction or injection. Int J Heat Fluid Flow 16:280–290

    Article  Google Scholar 

  35. Magyari E, Keller B (1999) Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J Phys D Appl Phys 32:577–585

    Article  ADS  Google Scholar 

  36. Elbashbeshy EMA (2001) Heat transfer over an exponentially stretching continuous surface with suction. Arch Mech 53:643–651

    MATH  Google Scholar 

  37. Khan SK, Sanjayanand E (2005) Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet. Int J Heat Mass Transfer 48:1534–1542

    Article  MATH  Google Scholar 

  38. Partha MK, Murthy PVSN, Rajasekhar GP (2005) Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. Heat Mass Transfer 41:360–366

    Article  ADS  Google Scholar 

  39. Elbarbary EME, Kady MEl (2003) Chebyshev finite-difference approximation for the boundary value problems. Appl Math Comput 139:513–523

    Article  MATH  MathSciNet  Google Scholar 

  40. Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  41. Nasr H, Hassanien IA, Hawary HMEI (1990) Chebyshev solution of laminar boundary layer flow. Int J Comput Math 33:127–132

    Article  MATH  Google Scholar 

  42. Eldabe NT, Elshehawey EF, Elbarbary EME, Elgazery NS (2005) Chebyshev finite difference method for MHD flow of a micropolar fluid past a stretching sheet with heat transfer. Appl Math Comput 160:437–450

    Article  MATH  MathSciNet  Google Scholar 

  43. Ishak A, Nazar R, Pop I (2008) Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transfer 44:921–927

    Article  ADS  Google Scholar 

  44. Alizadeh-Pahlavan A, Sadeghy K (2009) On the use of homotopy analysis method for solving unsteady MHD flow of Maxwellian fluids above impulsively stretching sheets. Commun Nonlinear Sci Numer Simul 14:1355–1365

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Varga RS (2000) Matrix Iterative Analysis. Springer, Berlin, p 223

    Book  MATH  Google Scholar 

  46. Harris J (1977) Rheology and non-Newtonian flow. Longman, London

    MATH  Google Scholar 

  47. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, Boston

    Google Scholar 

Download references

Acknowledgments

One of the authors (MK) is thankful to the University Grants Commission, India, for the financial support under the Research Scientist Scheme. The authors also thank the reviewers for comments and suggestions which resulted in considerable improvement in the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kumari.

Appendices

Appendix 1

Chebyshev polynomials have been used widely in CFD [39, 41, 42]. Eldabe et al. [42] have used Chebyshev finite-difference method (ChFDM) for the solution of the MHD flow and heat transfer over a porous stretching surface in an otherwise quiescent micropolar fluid. This method requires the definition of grid points and it is applied to satisfy the differential equations and the boundary conditions at these grid points. This method can be regarded as a non-uniform finite-difference scheme. The derivatives of the function F(X) at a point X j is a linear combination from the values of the function F(X) at the Gauss–Lobatto points X k  = cos(/L), where \( k = 0,\; 1, \ldots , \;L \), and j is an integer 0 ≤ j ≤ L.

The derivatives of the function F(X) at the points X k are given by [39]

$$ F^{(n)} \left( {X_{k} } \right) = \mathop{\sum}\limits_{\begin{subarray}{c} j = 0\\ \end{subarray}}^{L}d_{k, j}^{\left( n \right)} F\left( {X_{j} } \right) ,\quad n = 1, \;\;2, \;\;3 $$
(13)

where

$$ d_{k, j}^{(1)} = \mathop{\frac{{4\Upgamma_{j} }}{L} \mathop{\sum} \limits_{n = 0}^{L}}\limits_{(n+1) odd} \mathop \sum \limits_{l = 0}^{n - 1} \frac{{nF_{n} }}{{c_{l} }} \bar{T}_{n} \left( {X_{j} } \right) \bar{T}_{l} \left( {X_{k} } \right) ,\quad k, \;\;j = 0,\;\;1, \ldots ,\;\;L, $$
$$ d_{k, j}^{(2)} = \mathop{\frac{{2\Upgamma_{j} }}{L}{\sum\limits_{n = 0}^{L}}}\limits_{(n+1)\,even} {\sum\limits_{l = 0}^{n - 2} } \frac{1}{{c_{l} }} \Upgamma_{n} n\left( {n^{2} - l^{2} } \right) \bar{T}_{n} \left( {X_{j} } \right) \bar{T}_{l} \left( {X_{k} } \right) , \quad k, \;\;j = 0,\;\;1, \ldots ,\;\;L, $$
$$ d_{k, j}^{(3)} = \mathop{\frac{{4\Upgamma_{j} }}{L} {\sum\limits_{n = 0}^{L}}}\limits_{{( {{n} + {\text{l}}}){\text{even }}}} \mathop{{\sum\limits_{l = 0}^{n - 2}}}\limits_{{\left( {{\text{i}} + {\text{l}}} \right){\text{ odd}}}} \mathop \sum \limits_{i = 0}^{l - 1} \frac{1}{{c_{i} c_{l} }} \Upgamma_{n} nl\left( {n^{2} - l^{2} } \right) \bar{T}_{n} \left( {X_{j} } \right) \bar{T}_{i} \left( {X_{k} } \right) $$
$$ k, \;j = 0, 1, \ldots , L ,\quad \Upgamma_{0} = \Upgamma_{1} = 1/2,\quad \Upgamma_{j} = 1 ,\quad {\text{for }}\,\, j = 1, \;2, \ldots , L - 1 . $$
(14)

For the present problem the domain is 0 ≤ η ≤ η , where η is the edge of the boundary layer. The algebraic mapping

$$ \xi = 2\left( {\eta /\eta_{\infty } } \right) - 1 , $$
(15)

has been used to convert \( \left[ {0, \eta_{\infty } } \right] \) to the computational domain \( \left[ { - 1, 1} \right] \). The governing Eqs. (9) and (10) can be expressed as

$$ f^{\prime\prime\prime}\left( \xi \right) + \left( {\eta_{\infty } /2} \right)f\left( \xi \right)f^{\prime\prime}\left( \xi \right) - \eta_{\infty } \left( {f^{\prime}\left( \xi \right)} \right)^{2} + \left( {\lambda_{1} /8} \right)\eta_{\infty }^{3} \theta \left( \xi \right) - \left( {\eta_{\infty } /4} \right)Mf^{\prime}\left( \xi \right)\, - \lambda \left[ {\left( {f^{\prime}\left( \xi \right)} \right)^{2} \left\{ {4f^{\prime}\left( \xi \right) + 5\left( {1 + \xi } \right)f^{\prime\prime}\left( \xi \right) + \;\left( {1 + \xi } \right)^{2} f^{\prime\prime\prime}\left( \xi \right)} \right\}} + \left\{ {f\left( \xi \right) + \left( {1 + \xi } \right)f^{\prime}\left( \xi \right)} \right\}^{2} f^{\prime\prime\prime}\left( \xi \right) -\; 2f^{\prime}\left( \xi \right) {\left\{ {\left( {f\left( \xi \right) + \left( {1 + \xi } \right)f^{\prime}\left( \xi \right)} \right)\left( {3f^{\prime\prime}\left( \xi \right) +\; \left( {1 + \xi } \right)f^{\prime\prime\prime}\left( \xi \right)} \right)} \right\}} \right] = 0 , $$
(16)
$$ \theta^{''} \left( \xi \right) + \left( {\Pr \eta_{\infty } /2} \right)\left[ {f\left( \xi \right)\theta^{'} \left( \xi \right) - 4f^{'} \left( \xi \right)\theta \left( \xi \right)} \right] \hfill + 2 \Pr \,\,Gb \left[ {2\eta_{\infty }^{ - 2} \left( {f^{''} \left( \xi \right)} \right)^{2} +\; 2^{ - 1} M\left( {f^{'} \left( \xi \right)} \right)^{2} } \right] = 0 . \hfill \\ $$
(17)

The boundary conditions are given by

$$ f\left( { - 1} \right) = 0 , \, \, f^{'} \left( { - 1} \right) = 2^{ - 1} \eta_{\infty } , \theta \left( { - 1} \right) = 1 ,\;\; \hfill f^{'} \left( 1 \right) = \theta \left( 1 \right) = 0 . \hfill \\ $$
(18)

Using (13) and (14) in (16) and (17), we get the following Chebyshev finite difference equations

$$\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(3)} f\left( {\xi_{j} } \right) + 2^{ - 1} \eta_{\infty } f\left( {\xi_{k} } \right)\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(2)} f\left( {\xi_{j} } \right) + \lambda_{1} \left( {\eta_{\infty } /2} \right)^{3} \theta \left( {\xi_{k} } \right) - \left( {\eta_{\infty } /4} \right)M\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} f\left( {\xi_{j} } \right) - \eta_{\infty } \left( {\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} f\left( {\xi_{j} } \right)} \right)^{2} - \lambda \left[ {\left( {\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} f\left( {\xi_{j} } \right)} \right)^{2} \times } \right. \hfill \left\{ {4\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} f\left( {\xi_{j} } \right) + 5\left( {1 + \xi_{k} } \right)\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(2)} f\left( {\xi_{j} } \right) + \left( {1 + \xi_{k} } \right)^{2} \mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(3)} f\left( {\xi_{j} } \right)} \right\} + \left\{ {f\left( {\xi_{k} } \right) + \left( {1 + \xi_{k} } \right)\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} f\left( {\xi_{j} } \right)} \right\}^{2} \mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(3)} f\left( {\xi_{j} } \right) - 2\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} f\left( {\xi_{j} } \right)\left\{ {\left( {f\left( {\xi_{k} } \right) + \left( {1 + \xi_{k} } \right)\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} f\left( {\xi_{j} } \right)} \right)} \right. \times \left. {\left. {\left( {3\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(2)} f\left( {\xi_{j} } \right) + \left( {1 + \xi_{k} } \right)\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(3)} f\left( {\xi_{j} } \right)} \right)} \right\}} \right] = 0 ,\quad k = 2, 3, \ldots, L - 1, $$
(19)
$$ \mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(2)} \theta \left( {\xi_{j} } \right) + 2^{ - 1} \Pr \eta_{\infty } \left[ {f\left( {\xi_{k} } \right)\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} \theta \left( {\xi_{j} } \right) - \;4\theta \left( {\xi_{k} } \right)\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} f\left( {\xi_{j} } \right)} \right]\, + 2 \Pr \,\,\, Gb \left[ {2\eta_{\infty }^{ - 2} \left( {\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(2)} f\left( {\xi_{j} } \right)} \right)^{2} + \;2^{ - 1} M\left( {\mathop \sum \limits_{j = 0}^{L} d_{k, j}^{(1)} f\left( {\xi_{j} } \right)} \right)^{2} } \right] = 0 ,\quad k = 1, \;2, \ldots , \;L - 1 . $$
(20)

The boundary conditions given by (18) can be expressed as

$$ f = 0 , \;\; \mathop \sum \limits_{j = 0}^{L} d_{0, j}^{(1)} f\left( {\xi_{j} } \right) = 2^{ - 1} \eta_{\infty } ,\quad \theta = 1\quad \text{at}\;\xi = - 1,\;\;\mathop \sum \limits_{j = 0}^{L} d_{N, j}^{(1)} f\left( {\xi_{j} } \right) = 0 , \theta = 0\quad \text{at} \; \xi = 1 . $$
(21)

The system of nonlinear algebraic equations which contains 2L − 1 equations for the unknown f(ξ i ), \( i = 1, \;\;2, \ldots , \;\;L \) and θ(ξ i ), \( i = 1,\;\; 2, \ldots , \;\;L - 1 \) has been linearised by Newton’s method and then solved by Varga algorithm [45]. Here L is taken as 50 and η  = 15. Further increase in L and η changes the results by less than 0.5 %.

Appendix 2

The boundary layer equations can be derived for any viscoelastic fluid from Cauchy equations of motion. For steady two-dimensional flows, these equations can be expressed as [17]

$$ \rho \left( {u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}} \right) = - \frac{\partial p}{\partial x} + \frac{{\partial \tau_{xx} }}{\partial x} + \frac{{\partial \tau_{xy} }}{\partial y}, $$
(22)
$$ \rho \left( {u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}} \right) = - \frac{\partial p}{\partial y} + \frac{{\partial \tau_{yx} }}{\partial x} + \frac{{\partial \tau_{yy} }}{\partial y}, $$
(23)

where ρ is the density of the fluid. The terms ∂τ xx /∂x and ∂τ yy /∂y are elastic terms and the terms ∂τ xy /∂y and ∂τ yx /∂x are viscous terms. Using the boundary layer theory [1], one can write

$$ u = o\left( 1 \right) ,\;\; v = o\left( \delta \right) ,\;\; x = o\left( 1 \right) ,\;\; y = o\left( \delta \right) . $$
(24)

For these orders of magnitudes, it can be shown that in Eqs. (22) and (23), the two elastic terms are of the same order as the two viscous terms, if we have

$$ \frac{{\tau_{xx} }}{\rho } = o\left( 1 \right) ,\;\;\frac{{\tau_{xy} }}{\rho } = o\left( \delta \right) ,\;\; \frac{{\tau_{yy} }}{\rho } = o\left( {\delta^{2} } \right) . $$
(25)

This implies that elastic effects should be considered in the boundary layer only for those viscoelastic fluids for which τ xx is of an order larger than τ xy and τ yy . Not all viscoelastic fluid models can satisfy this condition. Assuming that the stress components of a UCM fluid satisfy the order estimates as given by Eq. (25), the equations of motion can be simplified to

$$ \rho \left( {u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}} \right) = - \frac{\partial p}{\partial x} + \frac{{\partial \tau_{xx} }}{\partial x} + \frac{{\partial \tau_{xy} }}{\partial y} , $$
(26)
$$ \frac{\partial p}{\partial y} = 0 . $$
(27)

Equation (27) shows that, like Newtonian fluids, pressure variation across the boundary layer can be neglected for viscoelastic fluids [46]. Hence, for an incompressible fluid, the equations to be solved are

$$ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 , $$
(28)
$$ \rho \left( {u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}} \right) = - \frac{\partial p}{\partial x} + \frac{{\partial \tau_{xx} }}{\partial x} + \frac{{\partial \tau_{xy} }}{\partial y} . $$
(29)

Equations (28) and (29) contain four unknowns: u, v, τ xx and τ xy , and pressure can be obtained from the potential flow. Therefore, a constitutive equation relating stress components to the deformation field is required to make the number of unknowns equal to the number of equations. For a Maxwell fluid, the stress tensor, d ij , can be related to the deformation-rate tensor, d ij , as [17, 18]

$$ \tau_{ij} + \lambda^{*} \frac{\delta }{\delta t}\tau_{ij} = 2 \mu d_{ij} , $$
(30)

where μ is the coefficient of viscosity and λ * is the relaxation time. The time derivative δ/δt appearing in the above equation is the upper-convected time derivative which is required to satisfy the requirements of continuous mechanics (i.e., material objectivity and frame indifference). This time derivative, when applied to the stress tensor, reads as follows [17, 18, 47]

$$ \frac{\delta }{\delta t}\tau_{ij} = \frac{D}{Dt}\tau_{ij} - L_{jk} \tau_{ik} - \tau_{kj} L_{ik} , $$
(31)

where L ij is the velocity gradient tensor. After inserting the stress components for a Maxwell fluid [17, 18, 47] into Eq. (29), one obtains

$$ u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + \lambda^{*} \left( {u^{2} \frac{{\partial^{2} u}}{{\partial x^{2} }} + 2uv\frac{{\partial^{2} u}}{\partial x\partial y} + v^{2} \frac{{\partial^{2} u}}{{\partial y^{2} }}} \right) = - \frac{\partial p}{\partial x} + \nu \frac{{\partial^{2} u}}{{\partial y^{2} }} . $$
(32)

Equation (32) along with Eq. (28) is the boundary layer equation for a UCM fluid for a two-dimensional flow. However, to solve any problem, relevant boundary conditions are required. For our problem, boundary conditions are given in Eq. (7). The source terms due to the magnetic field, buoyancy force and pressure can easily be added to Eq. (32). In a similar manner, Eq. (6) can be obtained.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, M., Nath, G. Steady mixed convection flow of Maxwell fluid over an exponentially stretching vertical surface with magnetic field and viscous dissipation. Meccanica 49, 1263–1274 (2014). https://doi.org/10.1007/s11012-014-9884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9884-2

Keywords

Navigation