Skip to main content
Log in

Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Global prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes a threat to human health. Goose is a unique model of NAFLD for discovering therapeutic targets as its liver can develop severe steatosis without overt injury. Fatty acid desaturase (Fads) is a potential therapeutic target as Fads expression and mutations are associated with liver fat. Here, we hypothesized that Fads was promoted to provide a protection for goose fatty liver. To test this, goose Fads1 and Fads2 were sequenced. Fads1/2/6 expression was determined in goose liver and primary hepatocytes by quantitative PCR. Liver fatty acid composition was also analyzed by gas chromatography. Data indicated that hepatic Fads1/2/6 expression was gradually increased with the time of overfeeding. In contrast, trans-C18:1n9 fatty acid (Fads inhibitor) was reduced. However, enhanced Fads capacity for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis was not sufficient to compensate for the depleted LC-PUFAs in goose fatty liver. Moreover, cell studies showed that Fads1/2/6 expression was regulated by fatty liver-associated factors. Together, these findings suggest Fads1/2 as protective components are promoted to meet instant need for LC-PUFAs in goose fatty liver, and we propose this is required for severe hepatic steatosis without liver injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P (2015) Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis 47:181–190. doi:10.1016/j.dld.2014.09.020

    Article  PubMed  Google Scholar 

  2. Hu W, Ross J, Geng T, Brice SE, Cowart LA (2011) Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J Biol Chem 286:16596–16605. doi:10.1074/jbc.M110.186916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Geng T, Hu W, Broadwater MH, Snider JM, Bielawski J, Russo SB, Schwacke JH, Ross J, Cowart LA (2013) Fatty acids differentially regulate insulin resistance through endoplasm reticulum stress-mediated induction of tribbles homologue 3: a potential link between dietary fat composition and the pathophysiological outcomes of obesity. Diabetologia 56:2078–2087. doi:10.1007/s00125-013-2973-2

    Article  CAS  PubMed  Google Scholar 

  4. Sekiya M, Yahagi N, Matsuzaka T, Najima Y, Nakakuki M, Nagai R, Ishibashi S, Osuga J, Yamada N, Shimano H (2003) Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology 38:1529–1539. doi:10.1016/j.hep.2003.09.028

    Article  CAS  PubMed  Google Scholar 

  5. Burdge GC, Calder PC (2005) Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 45:581–597. doi:10.1051/rnd:2005047

    Article  CAS  PubMed  Google Scholar 

  6. Koletzko B (2001) Fatty acids and early human growth. Am J Clin Nutr 73:671–672

    CAS  PubMed  Google Scholar 

  7. Molto-Puigmarti C, Plat J, Mensink RP, Muller A, Jansen E, Zeegers MP, Thijs C (2010) FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr 91:1368–1376. doi:10.3945/ajcn.2009.28789

    Article  CAS  PubMed  Google Scholar 

  8. Arterburn LM, Hall EB, Oken H (2006) Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 83:1467S–1476S

    CAS  PubMed  Google Scholar 

  9. Park WJ, Kothapalli KS, Reardon HT, Lawrence P, Qian SB, Brenna JT (2012) A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids. J Lipid Res 53:1502–1512. doi:10.1194/jlr.M025312

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mizutani Y, Kihara A, Igarashi Y (2004) Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. FEBS Lett 563:93–97. doi:10.1016/S0014-5793(04)00274-1

    Article  CAS  PubMed  Google Scholar 

  11. Ternes P, Franke S, Zahringer U, Sperling P, Heinz E (2002) Identification and characterization of a sphingolipid delta 4-desaturase family. J Biol Chem 277:25512–25518. doi:10.1074/jbc.M202947200

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Ge L, Parimoo S, Stenn K, Prouty SM (1999) Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem J 340(Pt 1):255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ntambi JM, Miyazaki M (2004) Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43:91–104

    Article  CAS  PubMed  Google Scholar 

  14. Sprecher H (1999) An update on the pathways of polyunsaturated fatty acid metabolism. Curr Opin Clin Nutr Metab Care 2:135–138

    Article  CAS  PubMed  Google Scholar 

  15. Lengi AJ, Corl BA (2007) Identification and characterization of a novel bovine stearoyl-CoA desaturase isoform with homology to human SCD5. Lipids 42:499–508. doi:10.1007/s11745-007-3056-2

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Yu L, Schmidt RE, Su C, Huang X, Gould K, Cao G (2005) Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun 332:735–742. doi:10.1016/j.bbrc.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  17. Zhang S, Yang Y, Shi Y (2005) Characterization of human SCD2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. Biochem J 388:135–142. doi:10.1042/BJ20041554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blanchard H, Legrand P, Pedrono F (2011) Fatty acid desaturase 3 (Fads3) is a singular member of the Fads cluster. Biochimie 93:87–90. doi:10.1016/j.biochi.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  19. Marquardt A, Stohr H, White K, Weber BH (2000) cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 66:175–183. doi:10.1006/geno.2000.6196

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr 24:345–376. doi:10.1146/annurev.nutr.24.121803.063211

    Article  CAS  PubMed  Google Scholar 

  21. Cho HP, Nakamura MT, Clarke SD (1999) Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J Biol Chem 274:471–477

    Article  CAS  PubMed  Google Scholar 

  22. Cho HP, Nakamura M, Clarke SD (1999) Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 274:37335–37339

    Article  CAS  PubMed  Google Scholar 

  23. Wolfe LS (1982) Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J Neurochem 38:1–14

    Article  CAS  PubMed  Google Scholar 

  24. Calder PC (2013) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 75:645–662. doi:10.1111/j.1365-2125.2012.04374.x

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schaeffer L, Gohlke H, Muller M, Heid IM, Palmer LJ, Kompauer I, Demmelmair H, Illig T, Koletzko B, Heinrich J (2006) Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet 15:1745–1756. doi:10.1093/hmg/ddl117

    Article  CAS  PubMed  Google Scholar 

  26. Gieger C, Geistlinger L, Altmaier E, Hrabe de Angelis M, Kronenberg F, Meitinger T, Mewes HW, Wichmann HE, Weinberger KM, Adamski J, Illig T, Suhre K (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4:e1000282. doi:10.1371/journal.pgen.1000282

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rzehak P, Heinrich J, Klopp N, Schaeffer L, Hoff S, Wolfram G, Illig T, Linseisen J (2009) Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr 101:20–26. doi:10.1017/S0007114508992564

    Article  CAS  PubMed  Google Scholar 

  28. Malerba G, Schaeffer L, Xumerle L, Klopp N, Trabetti E, Biscuola M, Cavallari U, Galavotti R, Martinelli N, Guarini P, Girelli D, Olivieri O, Corrocher R, Heinrich J, Pignatti PF, Illig T (2008) SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids 43:289–299. doi:10.1007/s11745-008-3158-5

    Article  CAS  PubMed  Google Scholar 

  29. Xie L, Innis SM (2008) Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr 138:2222–2228. doi:10.3945/jn.108.096156

    Article  CAS  PubMed  Google Scholar 

  30. Harslof LB, Larsen LH, Ritz C, Hellgren LI, Michaelsen KF, Vogel U, Lauritzen L (2013) FADS genotype and diet are important determinants of DHA status: a cross-sectional study in Danish infants. Am J Clin Nutr 97:1403–1410. doi:10.3945/ajcn.113.058685

    Article  PubMed  Google Scholar 

  31. Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, Guralnik JM, Singleton A, Bandinelli S, Cherubini A, Arnett D, Tsai MY, Ferrucci L (2009) Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet 5:e1000338. doi:10.1371/journal.pgen.1000338

    Article  PubMed  PubMed Central  Google Scholar 

  32. Elbein SC, Kern PA, Rasouli N, Yao-Borengasser A, Sharma NK, Das SK (2011) Global gene expression profiles of subcutaneous adipose and muscle from glucose-tolerant, insulin-sensitive, and insulin-resistant individuals matched for BMI. Diabetes 60:1019–1029. doi:10.2337/db10-1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park WJ, Kothapalli KS, Lawrence P, Brenna JT (2011) FADS2 function loss at the cancer hotspot 11q13 locus diverts lipid signaling precursor synthesis to unusual eicosanoid fatty acids. PLoS ONE 6:e28186. doi:10.1371/journal.pone.0028186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stoffel W, Holz B, Jenke B, Binczek E, Gunter RH, Kiss C, Karakesisoglou I, Thevis M, Weber AA, Arnhold S, Addicks K (2008) Delta6-desaturase (FADS2) deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids. EMBO J 27:2281–2292. doi:10.1038/emboj.2008.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stroud CK, Nara TY, Roqueta-Rivera M, Radlowski EC, Lawrence P, Zhang Y, Cho BH, Segre M, Hess RA, Brenna JT, Haschek WM, Nakamura MT (2009) Disruption of FADS2 gene in mice impairs male reproduction and causes dermal and intestinal ulceration. J Lipid Res 50:1870–1880. doi:10.1194/jlr.M900039-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caspi A, Williams B, Kim-Cohen J, Craig IW, Milne BJ, Poulton R, Schalkwyk LC, Taylor A, Werts H, Moffitt TE (2007) Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci USA 104:18860–18865. doi:10.1073/pnas.0704292104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brookes KJ, Chen W, Xu X, Taylor E, Asherson P (2006) Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorder. Biol Psychiatry 60:1053–1061. doi:10.1016/j.biopsych.2006.04.025

    Article  CAS  PubMed  Google Scholar 

  38. Reardon HT, Zhang J, Kothapalli KS, Kim AJ, Park WJ, Brenna JT (2012) Insertion-deletions in a FADS2 intron 1 conserved regulatory locus control expression of fatty acid desaturases 1 and 2 and modulate response to simvastatin. Prostaglandins Leukot Essent Fatty Acids 87:25–33. doi:10.1016/j.plefa.2012.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang L, Athinarayanan S, Jiang G, Chalasani N, Zhang M, Liu W (2015) Fatty acid desaturase 1 gene polymorphisms control human hepatic lipid composition. Hepatology 61:119–128. doi:10.1002/hep.27373

    Article  CAS  PubMed  Google Scholar 

  40. Hermier D, Saadoun A, Salichon MR, Sellier N, Rousselot-Paillet D, Chapman MJ (1991) Plasma lipoproteins and liver lipids in two breeds of geese with different susceptibility to hepatic steatosis: changes induced by development and force-feeding. Lipids 26:331–339

    Article  CAS  PubMed  Google Scholar 

  41. Mourot J, Guy G, Peiniau P, Hermier D (2006) Effects of overfeeding on lipid synthesis, transport and storage in two breeds of geese differing in their capacity for fatty liver production. Anim Res 55:427–442

    Article  CAS  Google Scholar 

  42. Hermier D, Rousselot-Pailley D, Peresson R, Sellier N (1994) Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis. Biochim Biophys Acta 1211:97–106

    Article  CAS  PubMed  Google Scholar 

  43. Zhang R, Zhu L, Zhang Y, Shao D, Wang L, Gong D (2013) cDNA cloning and the response to overfeeding in the expression of stearoyl-CoA desaturase 1 gene in Landes goose. Gene 512:464–469. doi:10.1016/j.gene.2012.09.131

    Article  CAS  PubMed  Google Scholar 

  44. Kamboh AA, Zhu WY (2013) Effect of increasing levels of bioflavonoids in broiler feed on plasma anti-oxidative potential, lipid metabolites, and fatty acid composition of meat. Poult Sci 92:454–461. doi:10.3382/ps.2012-02584

    Article  CAS  PubMed  Google Scholar 

  45. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  46. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  47. Geng T, Xia L, Russo S, Kamara D, Cowart LA (2015) Prosteatotic genes are associated with unsaturated fat suppression of saturated fat-induced hepatic steatosis in C57BL/6 mice. Nutr Res 35:812–822. doi:10.1016/j.nutres.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gentile CL, Pagliassotti MJ (2008) The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J Nutr Biochem 19:567–576. doi:10.1016/j.jnutbio.2007.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P, Poniachik J (2004) Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 106:635–643. doi:10.1042/CS20030326

    Article  CAS  Google Scholar 

  51. Wang X, Cao Y, Fu Y, Guo G, Zhang X (2011) Liver fatty acid composition in mice with or without nonalcoholic fatty liver disease. Lipids Health Dis 10:234. doi:10.1186/1476-511X-10-234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brenner RR (2003) Hormonal modulation of delta6 and delta5 desaturases: case of diabetes. Prostaglandins Leukot Essent Fatty Acids 68:151–162

    Article  CAS  PubMed  Google Scholar 

  53. Wijendran V, Downs I, Srigley CT, Kothapalli KS, Park WJ, Blank BS, Zimmer JP, Butt CM, Salem N Jr, Brenna JT (2013) Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase (FADS) alternative transcript expression in suckling piglets. Prostaglandins Leukot Essent Fatty Acids 89:345–350. doi:10.1016/j.plefa.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  54. Melin T, Nilsson A (1997) Delta-6-desaturase and delta-5-desaturase in human Hep G2 cells are both fatty acid interconversion rate limiting and are upregulated under essential fatty acid deficient conditions. Prostaglandins Leukot Essent Fatty Acids 56:437–442

    Article  CAS  PubMed  Google Scholar 

  55. Han C, Wang J, Li L, Zhang Z, Wang L, Pan Z (2009) The role of insulin and glucose in goose primary hepatocyte triglyceride accumulation. J Exp Biol 212:1553–1558. doi:10.1242/jeb.022210

    Article  CAS  PubMed  Google Scholar 

  56. Yamazaki K, Hamazaki T, Yano S, Funada T, Ibuki F (1991) Changes in fatty acid composition in rat blood and organs after infusion of docosahexaenoic acid ethyl ester. Am J Clin Nutr 53:620–627

    CAS  PubMed  Google Scholar 

  57. Kaminsky LA, Knowlton RG, Perkins RM 3rd, Hetzler RK (1986) Relationships of aerobic capacity and percent body fat with plasma free fatty acid following walking. Am J Clin Nutr 44:603–609

    CAS  PubMed  Google Scholar 

  58. Weinberg RB, Singh KK (1989) Short-term parenteral nutrition with glucose and Intralipid: effects on serum lipids and lipoproteins. Am J Clin Nutr 49:794–798

    CAS  PubMed  Google Scholar 

  59. Pan Z, Wang J, Kang B, Lu L, Han C, Tang H, Li L, Xu F, Zhou Z, Lv J (2010) Screening and identification of differentially expressed genes in goose hepatocytes exposed to free fatty acid. J Cell Biochem 111:1482–1492. doi:10.1002/jcb.22878

    Article  CAS  PubMed  Google Scholar 

  60. Han C, Wei S, He F, Liu D, Wan H, Liu H, Li L, Xu H, Du X, Xu F (2015) The regulation of lipid deposition by insulin in goose liver cells is mediated by the PI3 K–AKT–mTOR signaling pathway. PLoS ONE 10:e0098759. doi:10.1371/journal.pone.0098759

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Nature Science Foundation of China (Beijing, China) to D.G. (31372298) and T.G. (31472086), the Priority Academic Program Development of Jiangsu Higher Education Institutions to both D.G. and T.G., Jiangsu Agriculture Science and Technology Innovation Fund [Jiangsu, China; Grant No. CX(12)2033] to D.G., Scientific and Technical Support Program of Jiangsu Province (Jiangsu, China; Grant No. BE2011328) to D.G, and the Research and Innovation Program for College Graduates of Jiangsu Province (.KYLX_1355) to Y.Z.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daoqing Gong or Tuoyu Geng.

Additional information

Rashid H. Osman and Long Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, R.H., Liu, L., Xia, L. et al. Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver. Mol Cell Biochem 418, 103–117 (2016). https://doi.org/10.1007/s11010-016-2737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2737-7

Keywords

Navigation