Skip to main content
Log in

Late Pliocene Mega Debris Flow Deposit and Related Fluid Escapes Identified on the Antarctic Peninsula Continental Margin by Seismic Reflection Data Analysis

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

We have obtained improved images of a debris flow deposit through the reprocessing of multichannel seismic reflection data between Drifts 6 and 7 of the continental rise of the Pacific margin of the Antarctic Peninsula. The reprocessing, primarily aimed at the reduction of noise, relative to amplitude preservation, deconvolution, also included accurate velocity analyses. The deposit is dated as upper Pliocene (nearly 3.0 Ma) via correlation to Sites 1095 and 1096 of the Ocean Drilling Program (ODP) Leg 178. The estimated volume is about 1800 km3 and the inferred provenance from the continental slope implies a run out distance exceeding 250 km. The dramatic mass-wasting event that produced this deposit, unique in the sedimentary history of this margin, is related to widespread late Pliocene margin erosion. This was associated with a catastrophic continental margin collapse, following the Antarctic ice sheet expansion in response to global cooling. The seismic data analysis also allowed us to identify diffractions and amplitude anomalies interpreted as expressions of sedimentary mounds at the seafloor overlying narrow high-velocity zones that we interpret as conduits of fluid expulsion hosting either methane hydrates or authigenic carbonates. Fluid expulsion was triggered by loading of underlying sediments by the debris flow deposits and may have continued until today by input of fluids from sediment compaction following the deep diagenesis of biogenic silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksu A.E. and Hiscott R.N. (1989). Slides and debris flows on the high-latitude continental slopes of Baffin Bay. Geology 17: 885–888

    Article  Google Scholar 

  • Amblas, D., Urgeles, R., Canals, M., Calafat, A.M. Rebesco, M., Camerlenghi, A., Estrada, F. De Batist, M. and Hugues-Clarke, J.E. 2005, Relationship between continental rise development and palaeo-ice sheet dynamics, Northern Antarctic Peninsula Pacific margin, Quat. Sci. Rev. DOI: 10.1016/j.quascirev.2005.07.012

  • Anderson J.B. (1999). Antarctic Marine Geology. Cambridge University Press, Cambridge, 289

    Google Scholar 

  • Anderson, J.B., Kurtz, D.D. and Weaver, F.M., 1979, Sedimentation on the Antarctic continental slope, in: Doyle, L.J. and Pilkey, O. (eds.), Geology of Continental Slopes. Society of Economic Paleontologist and Mineralogist Special Publication 27, 265–283

  • Barker, P.F. and Camerlenghi, A., 2002, Synthesis of Leg 178 results: glacial history of the Antarctic Peninsula from Pacific margin sediments, in Barker, P.F., Camerlenghi, A., Acton, G.D. and Ramsay, A.T.S. (eds.), Proc. ODP, Sci. Results, 178, 1–40. College Station TX (Ocean Drilling Program)

  • Barker, P.F. and Camerlenghi, A., 1999. An approach to Antarctic glacial history: the aims of Leg 178, in Barker, P.F., Camerlenghi, A., Acton, G.D. et al. (eds.), Proc. ODP, Init. Reports, 178, 1–44 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845–9547, U.S.A

  • Barker P.F., Barrett P.J., Camerlenghi A., Cooper A.K., Davey F.J., Domack E., Escutia C., Kristoffersen Y. and O’Brien P.E. (1998). Ice sheet history from Antarctic continental margin sediments: the ANTOSTRAT approach. Terra Antart. 5: 737–760

    Google Scholar 

  • Bart P.J., De Batist M. and Jokat W. (1999). Interglacial collapse off Crary Trough Mouth Fan, Weddell Sea, Antarctica: implications for Antarctic Glacial History. J. Sedim. Res. 69: 1276–1289

    Google Scholar 

  • Bart P.J., Anderson J.B., Trincardi F. and Shipp S.S. (2000). Seismic data from the Northern basin, Ross Sea, record extreme expansions of the East Antarctic Ice Sheet during the late Neogene. Mar. Geol. 166: 31–50

    Article  Google Scholar 

  • Bryn P., Solheim Berg A. K., Lien R, Forsberg C.F., Haflidason H., Ottesen D. and Rise I. (2003). The Storegga Slide complex; repeated large scale sliding in response to climatic Cyclicity. In: Locat, J. and Mienert, J. (eds) Submarine Mass Movements and Their Consequences, pp 215–222. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  • Camerlenghi A., Rebesco M. and Pudsey C.J (1997). High resolution terrigenous sedimentary record of the sediment drifts on the Antarctic Peninsula Pacific Margin (Initial results of the SEDANO program). In: Ricci, C.A. (eds) The Antarctic region: Geological evolution and processes, Proceedings of the VII ISAES (International Symposium of Antarctic Earth Sciences), Siena (Italy), Agosto 1995, pp 705–710. Terra Antartica Publication, Siena

    Google Scholar 

  • Canals M., Lastras G., Urgeles R., Casamora J.L., Mienert Cattaneo J. A., Haflidason H., Imbo Y., Laberg J.S., Locat J., Long D., Longvah O., Masson D.G., Sultan N., Trincardi F. and Bryn P. (2004). Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar. Geol. 213: 9–72

    Article  Google Scholar 

  • Carcione J.M. and Gangi A..F. (2000). Gas generation and overpressure; effects on seismic attributes. Geophysics 65: 1769–1779

    Article  Google Scholar 

  • Carter L. (2001). A large submarine debris flow in the path of the Pacific deep western boundary current off New Zealand. Geo-Mar. Lett. 2: 42–50

    Article  Google Scholar 

  • Chand S. and Minshull T.A. (2003). Seismic constraints on the effects of gas hydrate on sediment physical properties and fluid flow: a review. Geofluids 3: 275–289

    Article  Google Scholar 

  • Cooper, A.K. and O’Brien, P.E., 2004, Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling, in Cooper, A.K., O’Brien, P.E. and Richter, C. (eds.), Proc. ODP, Sci. Results, 188, 1–42. College Station TX (Ocean Drilling Program)

  • Brancolini G. and Donda F. (2003). Seismo-stratigraphic analysis of the Wilkes Land continental margin (East Antarctica): influence of glacially driven processes on the Cenozoic deposition. Deep Sea Res. II 50: 1563–1594

    Article  Google Scholar 

  • Diviacco, P. Rebesco, M., Camerlenghi, A. and Wardell, N., 2003, Advancement in understanding the sedimentary process of the Antarctic Peninsula margin from re-processing of formerly collected data, Program with abstracts, in 9th International Symposium on Antarctic Earth Sciences, ISAES Potsdam, Germany, September 2003

  • Dowdeswell, J.A. and Ó’Cofaigh, C. (eds.), 2002, Glacier-Influenced Sedimentation on High-latitude Continental Margins, Vol. 203. Geological Society of London Special Publication, p. 378

  • Dowdeswell J.A., Kenyon N.H., Laberg J.S. and Elverhøi A. (1997). Submarine debris flow on glacier-influenced margins; GLORIA imagery of the Bear Island Fan. In: Davies, T.A., Bell, T., Cooper, A.K., Josenhans, H., Polyak, L., Solheim, A., Stoker, AM.S., and Stravers, J.A. (eds) Glaciated Continental Margins. An Atlas of Acoustic Images, pp 118–119. Chapman & Hall, London

    Google Scholar 

  • Eyles N., Daniels J., Osterman L.E. and Januszczak N. (2001). Ocean Drilling Program Leg 178 (Antarctic Peninsula): sedimentology of glacially infíuenced continental margin topsets and foresets. Mar. Geol. 178: 135–156

    Article  Google Scholar 

  • Freiwald A. (2002). Reef-forming cold-water corals. In: Wefer, G. (eds) Ocean Margin Systems, pp 365–385. Springer-Verlag,

    Google Scholar 

  • Gei D. and Carcione J.M. (2003). Acoustic properties of sediments saturated with gas hydrate, free gas and water. Geophys. Prospect. 51: 141–157

    Article  Google Scholar 

  • Gersonde R., Kyte F.T., Frederichs T., Bleil U., Schenke H.-W. and Kuhn G. (2005). The late Pliocene impact of the Eltanin asteroid into the Southern Ocean – Documentation and environmental consequences European Geosciences Union Conference, 2005. Geophys. Res. Abstracts 7: 02449

    Google Scholar 

  • Gersonde R., Kyte F.T., Bleil U., Diekmann B., Flores J.A., Gohl K., Grahl G., Hagen R., Kuhn G., Sierro F.J., Voelker D., Abelmann A. and Bostwick J.A. (1997). Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature 390: 357–363

    Article  Google Scholar 

  • Haflidason H., Sejrup H.P., Nygård A., Mienert J., Bryn P., Lien R., Forsberg C.R., Berg K. and Masson D. (2004). The Storegga Slide: architecture, geometry and slide development. Mar. Geol. 213: 201–234

    Article  Google Scholar 

  • Hambrey, M.J., Barrett, P.J. and Powell, R.D., 2002, Late Oligocene and early Miocene glacimarine sedimentation in the SW Ross Sea, Antarctica; the record from offshore drilling, in Dowdeswell, J.A. and Ó Cofaigh, C. (eds.), Glacier-Influenced Sedimentation on High-latitude Continental Margins, Vol. 203. Geological Society of London, Special Publication, pp. 105–128

  • Hovland, M. and Judd, A.G., 1988, Seabed Pockmarks and Seepages. Graham and Trotman, London, p. 239

  • Hühnerbach, V., Masson, D.G. and the partners of the COSTA-Project, 2004, Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar. Geol. 213, 343–362

    Google Scholar 

  • Ilstad T, Elverhøi A., Issler D. and Marr J.G. (2004). Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Mar. Geol. 213: 415–438

    Article  Google Scholar 

  • Issler D., De Blasio F.V., Elverhøi A., Bryn P. and Lien R. (2005). Scaling behaviour of clay-rich submarine debris flows. Mar. Petrol. Geol. 22(1–2): 187–194

    Article  Google Scholar 

  • Jacobi R.D. (1976). Sediment slides on the northwestern continental margin of Africa. Mar. Geol. 22: 157–173

    Article  Google Scholar 

  • Kyte, F.T., 2002, Data report: A search for deposits of the late Pliocene impact of the Eltanin asteroid in rise sediments from the Antarctic Peninsula, Site 1096, in Barker, P.F., Camerlenghi, A., Acton, G.D. and Ramsay, A.T.S. (eds.), Proc. ODP, Sci. Results, 178, 1–6 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845–9547, U.S.A

  • Kyte F.T. and Brownlee D.E. (1985). Unmelted meteoritic debris in the late Pliocene iridium anomaly: evidence for the ocean impact of a nonchondritic asteroid. Geochim Cosmochim. Acta 49: 1095–1108

    Article  Google Scholar 

  • Kyte F.T., Zhou Z. and Wasson J.T. (1981). High noble metal concentrations in a late Pliocene sediment. Nature 292: 417–420

    Article  Google Scholar 

  • Kyte F.T., Zhou L. and Wasson J.T. (1988). New evidence on the size and possible effects of a late Pliocene oceanic asteroid impact. Science 24: 63–65

    Article  Google Scholar 

  • Laberg J.S. and Vorren T.O. (1995). Late Weichselian submarine debris flow deposit on the Bear Island Trough Mouth Fan. Mar. Geol. 127: 45–72

    Article  Google Scholar 

  • Larter R.D. and Barker P.F. (1989). Seismic stratigraphy of the Antarctic Peninsula Pacific margin: A record of Pliocene-Pleistocene ice volume and paleoclimate. Geology 17: 731–734

    Article  Google Scholar 

  • Larter R.D. and Cunningham A.P. (1993). The depositional pattern and distribution of glacial-interglacial sequences on the Antarctic Peninsula Pacific margin. Mar. Geol. 109: 203–219

    Article  Google Scholar 

  • Larter, R.D., Rebesco, M., Vanneste, L.E., Gambôa, L.A.P. and Barker, P.F., 1997, Cenozoic Tectonic, Sedimentary and Glacial History of the Continental Shelf West of Graham Land, Antarctic Peninsula, in Cooper, A.K. and Barker, P.F. (eds.), Geology and Seismic Stratigraphy of the Antartcic Margin II, Vol. 71. AGU Antarctic Research Series, pp. 1–27

  • Lastras G., Canals M., Hughes-Clarke J.E., Moreno. A., DeBatist M., Masson D.G. and Cochonat P. (2002). Seafloor imagery of the BIG’95 debris flow, western Mediterranean. Geology 30: 871–874

    Article  Google Scholar 

  • Lear C.H., Elderfield H. and Wilson P.A. (2000). Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287: 269–272

    Article  Google Scholar 

  • Lines L.R. and Ulrych T.J. (1977). The old and the new in seismic deconvolution and wavelet estimation. Geophys. Prosp. 25: 512–540

    Article  Google Scholar 

  • Lucchi R., Rebesco M., Camerlenghi A., Busetti M., Tomadin L., Villa G., Persico D., Morigi C., Bonci M.C. and Giorgetti G. (2002). Glacimarine Sedimentary Processes of a high-latitude, deep-sea sediment drift (Antarctic Peninsula Pacific margin). Mar. Geol. 189: 343–70

    Article  Google Scholar 

  • Lucchi R. and Rebesco M., 2005, Glacial contourites on the Antarctic Peninsula margins: insight for palaeoenvironmental and palaeoclimatic conditions, in Viana A. and Rebesco M. (eds.), Economic and Paleoclimatic Significance of Contourites. Geological Society of London Special Publication (in press)

  • Margolis S.V., Claeys P.F. and Kyte F.T. (1991). Microtektites, microkrystites and spinels from a late Pliocene asteroid impact in the Southern Ocean. Science 251: 1594–1597

    Article  Google Scholar 

  • Je.rey G., Elverhøi A, Harbitz C., Imran J. and Har P. (2002). Numerical simulation of mud-rich subaqueous debris flows on the glacially active margins of the Svalbard-Barents Sea. Mar. Geol. 188: 351–364

    Article  Google Scholar 

  • Masson D.G., Canals M., Alonso B., Urgeles R. and Huhnerbach V. (1998). The Canary debris Flow: source area morphology and failure mechanisms. Sedimentology 45: 411–432

    Article  Google Scholar 

  • McAdoo B.G., Pratson L.F. and Orange D.L. (2000). Submarine landslide geomorphology, US continental slope. Mar. Geol. 169: 103–136

    Article  Google Scholar 

  • Mienert J., Berndt C., Laberg J.S. and Vorren T.O. (2002). Submarine landslides on continental margins. In: Wefer, G., Billet, D., Hebbeln, D., Jørgensen, B.B., Schlüter, M., and van Veering, T. (eds) Ocean Margin Systems, pp 179–193. Springer Verlag,

    Google Scholar 

  • Mulder T. and Moran K. (1995). Relationship among submarine instabilities, sea-level variations and the presence of an ice sheet on the continental shelf: an example from the Verrill Canyon area, Scotian Shelf. Paleoceanography 10: 137–154

    Article  Google Scholar 

  • Nygård A., Sejrup H.P., Haflidason H. and King E.L. (2002). Geometry and genesis of glacigenic debris flows on the North Sea Fan: TOBI imagery and deep-tow boomer evidence. Mar. Geol. 188: 15–33

    Article  Google Scholar 

  • O’ Cofaigh C., Taylor J., Dowdeswell J.A. and Pudsey C. (2003). Palaeo-ice streams, trough mouth fans and high-latitude continental slope sedimentation. Boreas 32: 38–55

    Article  Google Scholar 

  • Paull C.K., Chanton J.P., Neumann A.C., Coston J.A., Martens C.S. and Showers W. (1992). Indicators of methane derived carbonates and chemosynthetic organic carbon deposits: Examples from the Florida Escarpment. Palaios 7: 361–375

    Article  Google Scholar 

  • Piper D.J.W. and McCall C. (2003). A synthesis of the distribution of submarine mass movements on the Eastern Canadian margin. In: Locat, J. and Mienert, J. (eds) Submarine Mass Movements and Their Consequences, pp 291–298. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  • Pudsey C.J. and Camerlenghi A. (1998). Glacial-intergalcial deposition on a sediment drift on the Pacific margin of the Antarctic Peninsula. Antarct. Sci. 10: 286–308

    Google Scholar 

  • Rebesco M., Larter R.D., Camerlenghi A. and Barker P.F (1996). Giant sediment drifts on the continental rise west of the Antarctic Peninsula. Geo-Mar. Lett. 16: 65–75

    Article  Google Scholar 

  • Rebesco, M., Neagu, C., Camerlenghi, A., and the MAGICO party, 2004, Western margin of the Antarctic Peninsula: an opportunity for seafloor bathymetric mapping and the new frontier of fluid escapes and mud volcanoes, in Ricci, C.A., Siddoway, C. and Wilson, T. (eds.), Frontiers and Opportunities in Antarctic Geosciences. Siena, Italy, August 2004, Abstracts

  • Rebesco, M., Pudsey, C., Canals, M., Camerlenghi, A., Barker, P., Estrada, F. and Giorgetti, A., 2002, Sediment drift and deep-sea channel systems, Antarctic Peninsula Pacific Margin, in Stow, D.A.V., Pudsey, C.J., Howe, J.A, Faugeres, J.C. and Viana, A.R. (eds.), Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics, Vol. 22. Geological Society, London Memoirs, pp. 353–371

  • Rebesco M., Camerlenghi A. and Zanolla C. (1998). Bathymetry and morphogenesis of the continental margin West of the Antarctic Peninsula. Terra Antarct. 5: 715–725

    Google Scholar 

  • Rebesco M., Camerlenghi A., Volpi V., Neagu, C., Accettella D., Lindberg B., Cova A., Zgur F. and the MAGICO party, 2005, Interaction of processes and importance of contourites: insights from the detailed morphology of sediment drift 7, Antarctica, in Viana A. and Rebesco M. (eds.), Economic and Paleoclimatic Significance of Controurites. Geological Society of London Special Publication (in press)

  • Shipboard Scientific Party, 1999a, Site 1095, in Barker, P.F., Camerlenghi, A., Acton, G.D. et al. (eds.), Proc. ODP, Init. Reports, 178, 1–173 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845–9547, U.S.A

  • Shipboard Scientific Party, 1999b. Leg 178 summary, in Barker, P.F., Camerlenghi, A. Acton, G.D., et al. (eds.), Proc. ODP, Init. Reports, 178, 1–60 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845–9547, U.S.A

  • Solheim A., Berg K., Forsberg C.F. and Bryn P. (2005). The Storegga Slide complex: repetitive large scale sliding with similar cause and development. Mar. Petrol. Geol. 22(1–2): 97–107

    Article  Google Scholar 

  • Tappin, D.R. (ed.), 2004, Submarine-slump-generated Tsunamis, Mar. Geol. 203(3/4), 199–386

    Google Scholar 

  • Terzaghi K. (1943). Theoretical soil mechanics. John Wiley and Sons, New York, 510

    Google Scholar 

  • Tinivella U. (2002). The seismic response to overpressure versus gas hydrate and free gas concentration. J. Seism. Explor. 11: 283–305

    Google Scholar 

  • Treitel S. and Robinson E. (1966). The design of high resolution digital filters, IEE Trans. Geosci. Electron. GE-4: 25–38

    Article  Google Scholar 

  • Tucholke B.E., Hollister C.D., Weaver F.M. and and Vennum W.R. (1976). Continental rise and abyssal plain sedimentation in the Southeast Pacific Basin. In: Hollister, C.D. and Craddock, C. (eds) Initial Reports of the DSDP, pp 359–400. U.S. Government Printing Ofiice, 35 Washington

    Google Scholar 

  • Volpi V., Camerlenghi A., Hillenbrand C.-D., Rebesco M. and Ivaldi R. (2003). The effects of biogenic silica on sediment consolidation on the Pacific margin of the Antarctic Peninsula. Basin Res. 15: 339–363

    Article  Google Scholar 

  • Volpi, V., Camerlenghi, A., Moerz, T., Corubolo, P., Rebesco, M. and Tinivella, U., 2001, Data report: Physical properties relevant to seismic stratigraphic studies, continental rise Sites 1095, 1096, and 1101, ODP Leg 178, Antarctic Peninsula, in: Barker, P.F., Camerlenghi, A., Acton, G.D. and Ramsay, A.T.S. (eds.), Proc. ODP, Sci. Results, 178, 1–36 [Online]. Available from World Wide Web: <http://www-odp. tamu.edu/publications/178_SR/VOLUME/CHAPTERS/SR178_17.PDF>

  • Rosch H., Berner U., Geyh M., Marchig V. and Schulz H. (1996). Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism of Pakistan. Mar. Geol. 136: 55–77

    Article  Google Scholar 

  • Vorren T.O., Laberg J.S., Blaume F., Dowdeswell J.A., Kenyon N.H., Mienert J., Rumohr J. and Werner F. (1998). The Norwegian–Greenland Sea continental margins: Morphology and late Quaternary sedimentary processes and environment. Quat. Sci. Rev. 17: 273–302

    Article  Google Scholar 

  • Winter, D. and Iwai, M., 2002. Data report: Neogene diatom biostratigraphy, Antarctic Peninsula Pacific margin, ODP Leg 178 rise sites, in Barker, P.F., Camerlenghi, A., Acton, G.D. and Ramsay, A.T.S. (eds.), Proc. ODP, Sci. Results, 178 [Online]. Available from World Wide Web: <http://www-odp. tamu.edu/publications/178_SR/chap_29/chap_29.htm>

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Diviacco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diviacco, P., Rebesco, M. & Camerlenghi, A. Late Pliocene Mega Debris Flow Deposit and Related Fluid Escapes Identified on the Antarctic Peninsula Continental Margin by Seismic Reflection Data Analysis. Mar Geophys Res 27, 109–128 (2006). https://doi.org/10.1007/s11001-005-3136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-005-3136-8

Keywords

Navigation