Skip to main content
Log in

Thermal analysis of electroosmotic flow in a vertical ciliated tube with viscous dissipation and heat source effects

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis of electroosmotic flow of Newtonian fluid in the presence of viscous dissipation and heat source in a vertical ciliated tube is discussed. Three different cases of electroosmotic flow with heat source, viscous dissipation and buoyancy effects are presented, and their solutions are calculated analytically. Exact solutions for velocity and temperature field are calculated for the first case (presence of heat source and buoyancy force) and second case (presence of viscous dissipation), but the approximate solution is calculated by the Adomian decomposition method for the third case (presence of buoyancy force and viscous dissipation). The modeled equations of electroosmotic flow are reduced into simple equations by the long wavelength and low Reynolds number approximation. Influences of physical parameters are graphically computed for axial velocity, temperature profile, pressure gradient and stream function. It is observed that electroosmosis shows the significant effect on velocity and temperature profile in the presence of viscous dissipation and buoyancy force. This mathematical model gives a deep understanding to describe the thermal analysis in biomimetic ciliary flow and for the efficient flow of highly viscous fluid due to artificial cilia on glass tube used in laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(w,\,u\) :

Axial and radial velocity in wave frame

T:

Temperature profile

\(\varOmega\) :

Potential function

\(\zeta\) :

Zeta potential

P :

Pressure

\({\varvec{\upvarepsilon}}\) :

Cilia length

\(\psi\) :

Stream function

\(Gr\) :

Grashof number

\(c\) :

Wave speed

\(k\) :

Electroosmotic parameter

\(Br\) :

Brinkman number

\(a\) :

Mean radius of the tube

\(Uhs\) :

Helmholtz–Smoluchowski velocity

\(\eta\) :

Heat source

\(\lambda\) :

Wavelength

\(\rho_{\text {e}}\) :

Electric charge density

\(\nu \;\) :

Dielectric permittivity of the medium

n0 :

Number density

e:

Proton charge

\(t\) :

Valence of elementary charge

kb :

Boltzmann constant

T0 :

Absolute temperature

\(\rho_{f}\) :

Fluid density

\(\mu\) :

Viscosity coefficient

g:

Acceleration of gravity

cp :

Heat capacity

m:

Thermal conductivity

\(\varphi\) :

Dimensionless temperature

\(\alpha\) :

Eccentricity of ellipse

\(\beta\) :

Wave number

References

  1. Kim M, Beskok A, Kihm K. Electro-osmosis-driven micro-channel flows: a comparative study of microscopic particle image velocimetry measurements and numerical simulations. Experts Fluids. 2002;33(1):170–80.

    CAS  Google Scholar 

  2. Wiley D, Fimbres WG. Electroosmotic drag in membranes. In: Wiley DE, editor. Encyclopedia of membranes. Berlin: Springer; 2016. p. 653–4.

    Google Scholar 

  3. Srivastava RC, Rastogi RP. Transport mediated by electrified interfaces: studies in the linear non-linear and far from equilibrium regimes. Amsterdam: Elsevier; 2003.

    Google Scholar 

  4. Kang Y, Yang C, Huang X. Electroosmotic flow in a capillary annulus with high zeta potentials. J colloid Interface Sci. 2002;253(2):285–94.

    CAS  PubMed  Google Scholar 

  5. Moghadam AJ. An exact solution of AC electro-kinetic-driven flow in a circular micro-channel. Eur J MechB/Fluids. 2012;34:91–6.

    Google Scholar 

  6. Cho CC, Chen CL. Characteristics of combined electroosmotic flow and pressure-driven flow in microchannels with complex-wavy surfaces. Int J Therm Sci. 2012;61:94–105.

    Google Scholar 

  7. Chen XY, Toh KC, Chai JC, Yang C. Developing pressure-driven liquid flow in microchannels under the electrokinetic effect. Int J Eng Sci. 2004;42(5):609–22.

    Google Scholar 

  8. Ooi KT, Yang C, Chai JC, Wong TN. Developing electro-osmotic flow in closed-end micro-channels. Int J Eng Sci. 2005;43(17):1349–62.

    Google Scholar 

  9. Jian Y, Yang L, Liu Q. Time periodic electro-osmotic flow through a microannulus. Phys Fluids. 2010;22(4):042001.

    Google Scholar 

  10. Liu QS, Jian YJ, Chang L, Yang LG. Alternating current (AC) electroosmotic flow of generalized Maxwell fluids through a circular microtube. Int J Phys Sci. 2012;7(45):5935–41.

    CAS  Google Scholar 

  11. Akgül MB, Pakdemirli M. Analytical and numerical solutions of electro-osmotically driven flow of a third grade fluid between micro-parallel plates. IntJ Non-Linear Mech. 2008;43(9):985–92.

    Google Scholar 

  12. Chen B, Wu J, Chen H. Numerical investigation of traveling wave electroosmotic flows in a microchannel. J Bio Nano Bio Tech. 2012;3(02):280.

    Google Scholar 

  13. Sharma A, Tripathi D, Sharma RK, Tiwari AK. Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids. Physica A: Stat Mech Appl. 2019;535:122148.

    CAS  Google Scholar 

  14. Shit GC, Mondal A, Sinha A, Kundu PK. Electro-osmotic flow of power-law fluid and heat transfer in a micro-channel with effects of Joule heating and thermal radiation. Phys A: Stat Mech Appl. 2016;462:1040–57.

    CAS  Google Scholar 

  15. Ranjit NK, Shit GC. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip. Phys A: Stat Mech Appl. 2017;482:458–76.

    CAS  Google Scholar 

  16. Prakash J, Tripathi D, Bég OA. Comparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis. Appl Nano Sci. 2020;2:1–4.

    Google Scholar 

  17. Rubin BK. Secretion properties, clearance, and therapy in airway disease. Trans Res Med. 2014;2(1):6.

    Google Scholar 

  18. Fatima M, Sohail A, Akram KB, Sherin L, Butt SI, Abid M, Bég OA. Biomechanics of superparamagnetic nanoparticles for laser hyperthermia. Bio Med Eng. 2020;32(01):2050007.

    CAS  Google Scholar 

  19. Sohail A, Fatima M, Ellahi R, Akram KB. A videographic assessment of ferrofluid during magnetic drug targeting: an application of artificial intelligence in nanomedicine. J MolLiquids. 2019;285:47–57.

    CAS  Google Scholar 

  20. Akbar NS, Butt AW. Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia. Int J Bio Math. 2014;7(6):1450066–80.

    Google Scholar 

  21. Sher Akbar N, Khan ZH. Heat transfer analysis of bi-viscous ciliary motion fluid. Int J Bio Math. 2015;8(02):1550026.

    Google Scholar 

  22. Akbar NS, Khan ZH, Nadeem S. Metachronal beating of cilia under influence of Hartmann layer and heat transfer. Eur Phys J Plus. 2014;129:176.

    Google Scholar 

  23. Manzoor N, Maqbool K, Bég OA, Shaheen S. Adomian decomposition solution for propulsion of dissipative magnetic Jeffrey biofluid in a ciliated channel containing a porous medium with forced convection heat transfer. Heat Tran Asian Res. 2019;48(2):556–81.

    Google Scholar 

  24. Ramesh K, Tripathi D, Beg OA. Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids. Propuls Power Res. 2018;8(3):17.

    Google Scholar 

  25. Raza M, Ellahi R, Sait S, Sarafraz M, Shadloo M, Waheed I. Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09097-5.

    Article  Google Scholar 

  26. Asadollahi A, Esfahani J, Ellahi R. Evacuating liquid coatings from a diffusive oblique fin in micro-/mini-channels. J Therm Anal Calorim. 2019;138(1):255–63.

    CAS  Google Scholar 

  27. Nazari S, Ellahi R, Sarafraz M, Safaei M, Asgari A, Akbari A. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2019;140:1–25.

    Google Scholar 

  28. Guo X, Qi H. Analytical solution of electro-osmotic peristalsis of fractional Jefferys fluid in a micro-channel. Micromachines. 2017;8(12):341.

    PubMed Central  Google Scholar 

  29. Den Toonder J, Bos F, Broer D, Filippini L, Gillies M, de Goede J, Mol T, Reijme M, Talen W, Wilderbeek H, Khatavkar V. Artificial cilia for active micro-fluidic mixing. Lab Chip. 2008;8(4):533–41.

    PubMed  Google Scholar 

  30. Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 1969;37(4):799–825.

    Google Scholar 

  31. Tripathi D, Bhushan S, Bég OA. Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics. J Mech Med Bio. 2017;17(03):1750052.

    Google Scholar 

  32. Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia. Am Rev Respir Dis. 1988;137(3):726–41.

    CAS  PubMed  Google Scholar 

  33. Barton C, Raynor S. Analytical investigation of cilia induced mucous flow. Bull Math Biophys. 1967;29(3):419–28.

    CAS  PubMed  Google Scholar 

  34. Agarwal M, King M, Rubin BK, Shukla JB. Mucus transport in a miniaturized simulated cough machine: effect of constriction and serous layer simulant. Biorheology. 1989;26(6):977–88.

    CAS  PubMed  Google Scholar 

  35. Jeffery PK, Li D. Airway mucosa: secretory cells, mucus and mucin genes. Eur Respir J. 1997;10(7):1655–62.

    CAS  PubMed  Google Scholar 

  36. Smith DJ, Gaffney EA, Blake JR. Modelling mucociliary clearance. Respir physiol Neurobiol. 2008;163(1):178–88.

    CAS  PubMed  Google Scholar 

  37. Vélez-Cordero JR, Lauga E. Waving transport and propulsion in a generalized Newtonian fluid. J Non-New Fluid Mech. 2013;199:37–50.

    Google Scholar 

  38. Chateau S, d’Ortona U, Poncet S, Favier J. Transport and mixing induced by beating cilia in human airways. Front Physiol. 2018;9:161.

    PubMed  PubMed Central  Google Scholar 

  39. Chatelin R, Poncet P. A parametric study of mucociliary transport by numerical simulations of 3D non-homogeneous mucus. J Biomech. 2016;49(9):1772–80.

    PubMed  Google Scholar 

  40. Maqbool K, Shaheen S, Mann AB. Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube. SpringerPlus. 2016;5(1):1379.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Maqbool K, Mann AB, Siddiqui AM, Shaheen S. Fractional generalized Burgers’ fluid flow due to metachronal waves of cilia in an inclined tube. Adv Mech Eng. 2017;8:1687814017715565.

    Google Scholar 

  42. Mann AB, Shaheen S, Maqbool K, Poncet S. Fractional Burgers fluid flow due to metachronal ciliary motion in an inclined tube. Front Physiol. 2019;10:588.

    PubMed  PubMed Central  Google Scholar 

  43. Adomian G. Solving frontier problems of physics: the decomposition method. Dordrecht: Kluwer, Academic Publishers; 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Maqbool.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, F., Maqbool, K. & Mann, A.B. Thermal analysis of electroosmotic flow in a vertical ciliated tube with viscous dissipation and heat source effects. J Therm Anal Calorim 143, 2111–2123 (2021). https://doi.org/10.1007/s10973-020-09702-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09702-y

Keywords

Navigation