Skip to main content
Log in

Entropy analysis of SWCNT & MWCNT flow induced by collecting beating of cilia with porous medium

单壁碳和多壁碳纳米管内多孔纤毛脉动诱导流体流动的熵分析

  • Article
  • Heat and mass transfer
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.

摘要

对均匀磁场和多孔介质作用下水平纤毛管内黏性纳米流体流动的热力学进行分析。另外, 对存 在内部热源和热辐射的情况也进行了能量分析。加入碳纳米管(CNTs)增强了基流水的热导率。通过公 式转换得到一组非线性耦合偏微分方程。通过相似变量的转换, 将控制微分系统转化为一个常微分系 统。计算了温度、动量和压力梯度分布的封闭形式的精确解。本研究主要研究了碳纳米管的导电性, 讨论了不同流线的模式。热力学分析表明, 电流系统的熵随着Brinkmann 数、磁性参数、纳米粒子浓 度参数和Darcy 数的增大而增大。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BEJAN A. A study of entropy generation in fundamental convective heat transfer [J]. J Heat Transfer, 1979, 101(4): 718–725. DOI: 10.1115/1.3451063.

    Article  Google Scholar 

  2. GORLA R S R, PRATT D M. Second law analysis of a non-Newtonian laminar falling liquid film along an inclined heated plate [J]. Entropy, 2007, 9(1): 30–41. DOI: 10.3390/e9010030.

    Article  Google Scholar 

  3. AKSOY Y. Effects of couple stresses on the heat transfer and entropy generation rates for a flow between parallel plates with constant heat flux [J]. Int J Therm Sci, 2016, 107: 1–12. DOI: 10.1016/j.ijthermalsci.2016.03.017.

    Article  Google Scholar 

  4. SRINIVASACHARYA D, BINDU K. Entropy generation in a micropolar fluid flow through an inclined channel [J]. Alexandria Eng J, 2016, 55(2): 973–982. DOI: 10.1016/ j.aej.2016.02.027 (2016).

    Article  Google Scholar 

  5. HUSSAIN S, AHMED S E, AKBAR T. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle [J]. Int J Heat Mass Transfer, 2017, 114: 1054–1066. DOI: 10.1016/j.ijheatmasstransfer.2017.06.135.

    Article  Google Scholar 

  6. KAMRAN A, HUSSAIN S, SAGHEER M, AKMAL N. A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions [J]. Results in Physics, 2017, 7: 3037–3048. DOI: org/10.1016/j.rinp.2017.08.004 (2017).

    Article  Google Scholar 

  7. ABRAR M N, RIZWAN UL HAQ, AWAIS M, RASHID I. Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field [J]. Nuc Eng Technol, 2017, 49(8): 1680–1688. DOI: org/10.1016/j.net.2017.09.007.

    Article  Google Scholar 

  8. ABRAR M N, SAGHEER M, HUASSAIN S. Entropy formation analysis for the peristaltic motion of ferrofluids in the presence of Joule heating and fluid friction phenomena in a plumb duct [J]. J Nanofluids, 2019, 8: 1305–1313. DOI: org/10.1166/jon.2019.1672.

    Article  Google Scholar 

  9. SIDDIQA S, ABRAR M N, HOSSAIN M A, GORLA R S R. Double diffusive natural convection flow over a wavy surface situated in a non-absorbing medium [J]. Int J Heat and Mass Transfer, 2017, 109: 200–208. DOI: 10.1016/j.ijheatmasstransfer.2017.01.087.

    Article  Google Scholar 

  10. CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticle [C]// SIGINER D A, WANG H P. Developments and Applications of Non-Newtonian Flows. ASME FED, 1995, 231/ MD-66: 99–105.

    Google Scholar 

  11. DOBSON J. Magnetic nanoparticles for drug delivery [J]. Drug Dev Res, 2006, 67: 55–60. DOI: org/10.1002/ ddr.20067.

    Article  Google Scholar 

  12. HADJIPANAYIS C G, MACHAIDZE R, KALUZOVA M, WANG L, SCHUETTE A J, CHEN H, WU X, MAO H. EGFRvIII antibody conjugated iron oxide nanoparticles for magnetic resonance imaging guided convection-enhanced delivery and targeted therapy of glioblastoma [J]. Cancer Res, 2010, 70(15): 6303–6312. DOI: 10.1158/0008-5472.CAN- 10-1022.

    Article  Google Scholar 

  13. GIRGINOVA P I, DANIEL-DE-SILVA A L, LOPES C B, FIGUEIRA P, OTERO M, AMARAL V S, PEREIRA E, TRINDADE T. Silica coated magnetite particles for magnetic removal of Hg+2 from water [J]. J Colloid Interface Sci, 2010, 345(2): 234–240. DOI: 10.1016/j.jcis.2010. 01.087.

    Article  Google Scholar 

  14. KHAN W A, KHAN Z H. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary [J]. Appl Nanosci, 2014, 4(5): 633–641. DOI: org/10.1007/s13204-013-0242-9.

    Article  Google Scholar 

  15. ALY E H. Existence of the multiple exact solutions for nanofluids flow over a stretching/shrinking sheet embedded in a porous medium at the presence of magnetic field with electrical conductivity and thermal radiation effects [J]. Powder Technol, 2016, 301: 760–781. DOI: 10.1016/ j.powtec.2016.06.024.

    Article  Google Scholar 

  16. AHMED S B, ZHAO Y, FANG C, SU J. Transport of a simple liquid through carbon nanotubes: Role of nanotube size [J]. Phys Lett A, 2017, 381(40): 3487–3492. DOI: org/10.1016/j.physleta.2017.09.003.

    Article  Google Scholar 

  17. AKBAR N S, KHAN Z H. Variable fluid properties analysis with water based CNT nanofluid over a sensor sheet: Numerical solution [J]. J Mol Liq, 2017, 232: 471–477. DOI: 10.1016/j.molliq.2017.02.107.

    Article  Google Scholar 

  18. ABRAR M N, SAGHEER M, HUASSAIN S. Entropy analysis of Hall current and thermal radiation influenced by cilia with single and multi wall carbon nanotubes [J]. Bull Mater Sci, 2019, 42: 250. DOI: doi.org/10.1007/s12034-019- 1822-4.

    Article  Google Scholar 

  19. SHAH Z, BONYAH E, ISLAM S, GUL T. Impact of thermal radiation on electrical MHD rotating flow of carbon nanotubes over a stretching sheet [J]. AIP Ad, 2019, 9: 015115. DOI: org/10.1063/1.5048078.

    Article  Google Scholar 

  20. SHAH Z, DAWAR A, ISLAM S, KHAN I, LING D, CHING C. Darcy-Forchheimer flow of radiative carbon nanotubes with microstructure and inertial characteristics in the rotating frame [J]. Case Studies in Thermal Engineering, 2018, 12: 823–832. DOI: org/10.1016/j.csite.2018.09.007.

    Article  Google Scholar 

  21. NASIR S, SHAH Z, ISLAM S, KHAN W, KHAN S N. Radiative flow of magneto hydrodynamics single-walled J. Cent. South Univ. (2019) 26: 2109–2118

    Google Scholar 

  22. NASIR S, SHAH Z, ISLAM S, BONYAH E, GUL T. Darcy Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet [J]. AIP ADV, 2019, 9: 015223. DOI: org/10.1063/1.5083972.

    Article  Google Scholar 

  23. SHAH Z, DAWAR A, KUMAM P, KHAN W, ISLAM S. Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk [J]. Appl Sci, 2019, 9(8): 1533. DOI:10.3390/app9081533.

    Article  Google Scholar 

  24. SHAH Z, ISLAM S, AYAZ H, KHAN S. Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of Hall current [J]. J Heat Transfer, 2018, 141(2): 022401. DOI: 10.1115/1.4040415.

    Article  Google Scholar 

  25. SHEIKHOLESLAMI M, SHAH Z, SHAFEE A, KHAN I, TLILI I. Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle [J]. Sci Rep, 2019, 9: 1196. DOI: org/10.1038/s41598-018-37964-y.

    Article  Google Scholar 

  26. SHEIKHOLESLAMI M, SHAH Z, TASSADDIQ A, SHAFEE A, KHAN I. Application of electric field for augmentation of ferrofluid heat transfer in an enclosure including double moving walls [J]. IEEE ACESS, 2019, 7: 21048–21056. DOI: 10.1109/ACCESS.2019.2896206.

    Article  Google Scholar 

  27. SHAH Z, ISLAM S, GUL T, BONYAH E, KHAN M A. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates [J]. Results in physics, 2018, 9: 1201–1214. DOI: org/10.1016/j.rinp.2018. 01.064.

    Article  Google Scholar 

  28. NIELD D, BEJAN A. Convection in porous media [M]. 3rd ed. New York: Springer, 2006.

    MATH  Google Scholar 

  29. RAUS A L, PATMORE J, KURZEPA L, BULMER J, KOZIOL K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring [J]. Adv Funct Mater, 2014, 24: 3661–3682. DOI: org/10.1002/adfm. 201303716.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad N Abrar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrar, M.N., Sagheer, M. & Hussian, S. Entropy analysis of SWCNT & MWCNT flow induced by collecting beating of cilia with porous medium. J. Cent. South Univ. 26, 2109–2118 (2019). https://doi.org/10.1007/s11771-019-4158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4158-8

关键词

Key words

Navigation