Skip to main content
Log in

Dimethacrylate polymers with different glycerol content

Thermal study, degree of conversion, and morphological features

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objectives of this study were to verify thermal properties, degree of conversion, and morphological features of several dimethacrylate polymers with different glycerol content and obtain the better proportion system to decrease cost of final polymer. These polymers were synthesized by photopolymerization, which has economic and ecological advantages. The glycerol can be used as a coinitiator in photopolymerization and has the advantage of being inexpensive and non-toxic; thus, it is in the scope of the green chemistry principles. Simultaneous thermogravimetry–differential thermal analysis and derivative thermogravimetric, differential scanning calorimetry, middle infrared spectroscopy, and scanning electronic microscopy were used to determine thermal properties, degree of conversion, and morphological characteristics of polymers obtained. The thermoanalytical results showed that glycerol addition in the dimethacrylate system caused few modifications in the thermal stability of the polymer and thermal events when compared with pure polymers (without glycerol). Two dimethacrylate systems (UDMA/glycerol and Bis-GMA/glycerol) showed good results for conversion degree and morphological aspects when compared with pure systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fouassier JP, Allonas X, Burguet D. Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications. Prog Org Coat. 2003;47:16–36.

    Article  CAS  Google Scholar 

  2. Jakubiak J, Nie J, Línden LA, Rabek JF. Crosslinking photocopolymerization of acrylic acid (and N-vinylpyrrolidone) with triethylene glycol dimethacrylate initiated by camphorquinone/ethyl-4-dimethylaminobenzoate. J Polym Sci Pol Chem. 2001;38:876–86.

    Article  Google Scholar 

  3. Lu H, Lovell LG, Bowman CN. Exploiting the heterogeneity of cross-linked photopolymers to create high-T g polymers from polymerizations performed at ambient conditions. Macromolecules. 2001;34:8021–5.

    Article  CAS  Google Scholar 

  4. Ye Q, Spencer P, Wang Y, Misra A. Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives. J Biomater Mat Res. 2007;80:342–50.

    Article  CAS  Google Scholar 

  5. Rodrigues MR, Neumann MG. Fotopolimerização: princípios e métodos. Pol Cienc Tecnol. 2003;13:276–86.

    Article  CAS  Google Scholar 

  6. Lim KS, Schon BJ, Mekhileri NV, Brown GCJ, Chia CM, Prabakar S, Hooper GJ, Woodfield TBF. New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. Biomater Sci Eng. 2016;10:1752–62.

    Article  CAS  Google Scholar 

  7. Allen NS. Photoiniators for UV and visible curing of coatings: mechanisms and properties. J Photochem Photobiol Chem. 1996;100:101–7.

    Article  CAS  Google Scholar 

  8. Zhao J, Lalevée J, Lu H, MacQueen R, Kable SH, Schmidt TW, Stenzel MH, Xiao P. A new role of curcumin: as a multicolor photoinitiator for polymer fabrication under household UV to red LED bulbs. Polym Chem. 2015;6:5053–62.

    Article  CAS  Google Scholar 

  9. Anastas PT, Kirchhoff MM. Origins, Current Status, and Future Challenges of Green Chemistry. Accounts Chem Res. 2002;35:686–94.

    Article  CAS  Google Scholar 

  10. Centi G, Perathoner S. Catalysis and sustainable (green) chemistry. Catal Today. 2003;77:287–97.

    Article  CAS  Google Scholar 

  11. Hong N, Yang G, Lee J, Kim G. 3D bioprinting and its in vivo applications. J Biomed Mater Res. 2018;106:444–59.

    Article  CAS  Google Scholar 

  12. Xu X, He L, Zhu B, Li J, Li J. Advances in polymeric materials for dental applications. Polym Chem. 2017;8:807–23.

    Article  CAS  Google Scholar 

  13. Chang PY, Yang CH. Photopolymerization of electroactive film applied to full polymer electrochcromic device. Polym Express. 2017;11:176–86.

    Article  CAS  Google Scholar 

  14. Baroli B. Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue, engineering and cell encapsulation applications. J Chemic Technol Biotechnol. 2006;81:491–9.

    Article  CAS  Google Scholar 

  15. Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307–14.

    Article  CAS  PubMed  Google Scholar 

  16. Lee J, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120–33.

    Article  Google Scholar 

  17. Lalevée J, Fouassier JP. Dyes and chromophores in polymer science. 1st ed. Weinhein: Wiley; 2015.

    Book  Google Scholar 

  18. Fouassier JP, Lalevée J. Photoinitiators for polymer synthesis: scope, reactivity and efficiency. 1st ed. Weinhein: Wiley; 2012.

    Book  Google Scholar 

  19. Alarcon RT, Holanda BBC, Rinaldo D, Caires FJ, Almeida MV, Bannach G. Synthesis, thermal studies and conversion degree of dimethacrylate polymers using new non-toxic coinitiators. Quim Nova. 2017;40:363–70.

    CAS  Google Scholar 

  20. De Oliveira DSBL, De Oliveira LSBL, Alarcon RT, Holanda BBC, Bannach G. Use of curcumin and glycerol as an effective photoinitiating system in the polymerization of urethane dimethacrylate. J Therm Anal Calorim. 2017;128:1671–82.

    Article  CAS  Google Scholar 

  21. Morrison LR. Glycerol. In: Procter and Gamble, editor. Kirk-Othmer encyclopedia of chemical technology. New York: Wiley; 2000. pp. 921–932.

  22. Hatekayama T, Quinn FX. Thermal analysis: fundamentals and applications to polymer science. New York: Wiley; 1995.

    Google Scholar 

  23. Blom H, Yeh R, Wojnarowski R, Ling M. Detection of degradation of ABS Material via DSC. J Therm Anal Calorim. 2006;83:113–5.

    Article  CAS  Google Scholar 

  24. Worzakowska M. Thermo-oxidative decomposition behavior of starch-g-poly(citronellyl methacrylate) and starch-g-poly(citronellyl acrylate) copolymers. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-017-6950-8.

    Article  Google Scholar 

  25. Euvrard J, Revaux A, Bayle PA, Bardet M, Vuillaume D, Kahn A. The formation of polymer-dopant aggregates as a possible origin of limited doping efficiency at high dopant concentration. Org Electron. 2018;53:135–40.

    Article  CAS  Google Scholar 

  26. Viveiros R, Lopes MI, Heggie W, Casimiro T. Green approach on the development of lock-and-key polymers for API purification. Chem Eng J. 2017;308:229–39.

    Article  CAS  Google Scholar 

  27. Alarcon RT, Gaglieri C, da Silva BHST, Silva-Filho LC, Bannach G. New fluorescein dye derivatives and their use as an efficient photoinitiator using blue light LED. J Photochem Photobio Chem. 2017;343:112–8.

    Article  CAS  Google Scholar 

  28. Alarcon RT, Gaglieri C, de Oliveira AR, Bannach G. Use of DSC in degree of conversion of dimethacrylate polymers: easier and faster than MIR technique. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6988-2.

    Article  Google Scholar 

  29. Morancho JM, Cadenato A, Fernandez-Franco X, Salla JM, Ramis X. Isothermal kinetics of photopolymerization and thermal polymerization of Bis-GMA/TEGDMA resins. J Therm Anal Calorim. 2008;95:513–22.

    Article  Google Scholar 

  30. Bühler W, Dinjus E, Ederer HJ, Kruse A, Mas C. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J Supercrit Fluids. 2002;22:37–53.

    Article  Google Scholar 

  31. Ott L, Bicker M, Vogel H. Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production. Green Chem. 2006;8:214–20.

    Article  CAS  Google Scholar 

  32. Nimlos MR, Blanksby SJ, Qian X, Himmel ME, Johnson DK. Mechanism of glycerol dehydration. J Phys Chem A. 2006;110:6145–56.

    Article  CAS  PubMed  Google Scholar 

  33. Bannach G, Cavalheiro CCS, Calixto L, Cavalheiro ETG. Thermoanalytical study of monomers: BisGMA, BisEMA, TEGDMA, UDMA and their mixture. Braz J Therm Anal. 2015;4:28–34.

    Article  Google Scholar 

  34. Hayama T, Takahashi K, Kikutake K, Yokota I, Nemoto K. Analysis of polymerization behavior of dental dimethacrylate monomers by differential scanning calorimetry. J Oral Sci. 1999;41:9–13.

    Article  Google Scholar 

  35. American Society for Testing and Materials—ASTM. ASTM-E1356: standard test method for assignment of the glass transition temperatures by differential calorimetry. West Conshohocken: ASTM; 2014.

    Google Scholar 

  36. Lavorgna M, Piscitelli F, Mangiacapra P, Buonocore GC. Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Cabohydr Polym. 2010;82:291–8.

    Article  CAS  Google Scholar 

  37. Quijada-Garrido I, Iglesias-González V, Mázon-Arechederra JM, Barrales-Rienda JM. The role played by the interactions of small molecules with chitosan and their transition temperatures. Glass-forming liquids:1,2,3-Propantriol (glycerol). Cabohydr Polym. 2007;68:173–86.

    Article  CAS  Google Scholar 

  38. Gao C, Pollet E, Avérous L. Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hidrocol. 2017;63:414–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank CAPES (proc. 024/2012 Pro-equipment), POSMAT/UNESP, and FAPESP (Processes: 2013/09022-7 and 2017/08820-8) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Bannach.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcon, R.T., Gaglieri, C. & Bannach, G. Dimethacrylate polymers with different glycerol content. J Therm Anal Calorim 132, 1579–1591 (2018). https://doi.org/10.1007/s10973-018-7055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7055-8

Keywords

Navigation