Skip to main content
Log in

Some reflections on mathematicians’ views of quantization

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We start with a short presentation of the difference in attitude between mathematicians and physicists even in their treatment of physical reality, and look at the paradigm of quantization as an illustration. In particular, we stress the differences in motivation and realization between the Berezin and deformation quantization approaches, exposing briefly Berezin’s view of quantization as a functor. We continue with a schematic overview of deformation quantization and of its developments in contrast with the latter and discuss related issues, in particular, the spectrality question. We end by a very short survey of two main avatars of deformation quantization, quantum groups and quantum spaces (especially noncommutative geometry) presented in that perspective. Bibliography: 74 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Agarwal and E. Wolf, “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I, II, III,” Phys. Rev., D2, 2161–2186, 2187–2205, 2206–2225 (1970).

    MathSciNet  Google Scholar 

  2. A. Aspect, R. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett., 49, No. 25, 1804–1807 (1982).

    Article  MathSciNet  Google Scholar 

  3. D. Avis, H. Imai, T. Ito, and Y. Sasaki, “Two-party Bell inequalities derived from combinatorics via triangular elimination,” J. Phys. A, 38, No. 50, 10971–10987 (2005).

    Google Scholar 

  4. H. Basart, M. Flato, A. Lichnerowicz, and D. Sternheimer, “Deformation theory applied to quantization and statistical mechanics,” Lett. Math. Phys., 8, 483–494 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, “Deformation theory and quantization. I. Deformations of symplectic structures,” Ann. Physics, 111, 61–110 (1978). “II. Physical applications,” ibid, 111–151.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. S. Bell, “On the problem of hidden variables in quantum mechanics,” Rev. Modern Phys., 38, 447–452 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. A. Berezin, “Canonical operator transformation in representation of secondary quantization,” Soviet Phys. Dokl., 6, 212–215 (1961).

    MathSciNet  MATH  Google Scholar 

  8. F. A. Berezin, The Method of Second Quantization, Academic Press, New York-London (1966).

    MATH  Google Scholar 

  9. F. A. Berezin, “Quantization,” Math. USRR Izv., 38, 1109–1165 (1975). “Quantization in complex symmetric spaces,” Math. USRR Izv., 39, 341–379 (1976).

    Google Scholar 

  10. F. A. Berezin, “General concept of quantization,” Comm. Math. Phys., 40, 153–174 (1975).

    Article  MathSciNet  Google Scholar 

  11. F. A. Berezin, “Feynman path integrals in a phase space,” Uspekhi Fiz. Nauk, 132, 493–548 (1980).

    MathSciNet  Google Scholar 

  12. F. A. Berezin, Introduction to Superanalysis, Math. Phys. Appl. Math., 9, D. Reidel Publishing Co., Dordrecht (1987).

    MATH  Google Scholar 

  13. F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Kluwer Acad. Publ., Dordrecht (1991).

    MATH  Google Scholar 

  14. F. A. Berezin and D. A. Leites, “Supermanifolds,” Dokl. Akad. Nauk SSSR, 224, No. 3, 505–508 (1975).

    MathSciNet  Google Scholar 

  15. P. Bonneau, M. Flato, M. Gerstenhaber, and G. Pinczon, “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations,” Comm. Math. Phys., 161, 125–156 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Bonneau, M. Gerstenhaber, A. Giaquinto, and D. Sternheimer, “Quantum groups and deformation quantization: explicit approaches and implicit aspects,” J. Math. Phys., 45, 3703–3741 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. S. Cattaneo and G. Felder, “A path integral approach to the Kontsevich quantization formula,” Comm. Math. Phys., 212, 591–611 (2000). “On the globalization of Kontsevich’s star product and the perturbative Poisson sigma model,” Prog. Theor. Phys. Suppl., 144, 38–53 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Connes, Noncommutative Geometry, Academic Press, San Diego (1994). “Noncommutative differential geometry,” Inst. Hautes Études Sci. Publ. Math., No. 62, 257–360 (1985).

    MATH  Google Scholar 

  19. A. Connes, “A short survey of noncommutative geometry,” J. Math. Phys., 41, 3832–3866 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Connes, “Cyclic cohomology, noncommutative geometry and quantum group symmetries,” Lect. Notes Math., 1831, 1–71 (2004).

    MathSciNet  Google Scholar 

  21. A. Connes and M. Dubois-Violette, “Moduli space and structure of noncommutative 3-spheres,” Lett. Math. Phys., 66, 99–121 (2003).

    Article  MathSciNet  Google Scholar 

  22. A. Connes, M. Flato, and D. Sternheimer, “Closed star-products and cyclic cohomology,” Lett. Math. Phys., 24, 1–12 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Connes and D. Kreimer, “From local perturbation theory to Hopf and Lie algebras of Feynman graphs,” Lett. Math. Phys., 56, 3–15 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  24. E. B. Davies, “Semi-classical states for non-self-adjoint Schrödinger operators,” Comm. Math. Phys., 200, 35–41 (1999). “Semi-classical analysis and pseudo-spectra,” J. Diff. Equations, 216, 153–187 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Dencker, J. Sjöstrand, and M. Zworski, “Pseudospectra of semiclassical (pseudo-) differential operators,” Comm. Pure Appl. Math., 57, 384–415 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. De Wilde and P. B. A. Lecomte, “Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds,” Lett. Math. Phys., 7, 487–496 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  27. P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York (1964). “Generalized Hamiltonian dynamics,” Canad. J. Math., 2, 129–148 (1950).

    Google Scholar 

  28. J. Dito, “Star-product approach to quantum field theory: the free scalar field,” Lett. Math. Phys., 20, 125–134 (1990). “Star-products and nonstandard quantization for K-G equation,” J. Math. Phys., 33, 791–801 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Dito, “An example of cancellation of infinities in star-quantization of fields,” Lett. Math. Phys., 27, 73–80 (1993). “Star-produits en dimension infinie: le cas de la théorie quantique des champs,” Thesis, Université de Bourgogne, Dijon (1993).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Dito (= J. Dito), “Deformation quantization of covariant fields,” in: Deformation Quantization (Strasbourg 2001), IRMA Lect. Math. Theor. Phys., 1, Walter de Gruyter, Berlin (2002), pp. 55–66.

    Google Scholar 

  31. G. Dito and D. Sternheimer, “Deformation quantization: genesis, developments and metamorphoses,” in: Deformation Quantization (Strasbourg 2001), IRMA Lect. Math. Theor. Phys., 1, Walter de Gruyter, Berlin (2002), pp. 9–54.

    Google Scholar 

  32. M. R. Douglas, H. Liu, G. Moore, and B. Zwiebach, “Open string star as a continuous Moyal product,” J. High Energy Phys., 0204, No. 22 (2002).

    Google Scholar 

  33. M. R. Douglas and N. A. Nekrasov, “Noncommutative field theory,” Rev. Mod. Phys., 73, 977–1029 (2001).

    Article  MathSciNet  Google Scholar 

  34. V. Drinfeld, “Quantum groups,” in: Proceedings of the International Congress of Mathematicians (Berkeley 1986), Amer. Math. Soc., Providence, Rhode Island (1987), pp. 798–820.

    Google Scholar 

  35. B. V. Fedosov, “A simple geometrical construction of deformation quantization,” J. Diff. Geom., 40, 213–238 (1994). Deformation Quantization and Index Theory, Akademie Verlag, Berlin (1996). “The Atiyah-Bott-Patodi method in deformation quantization,” Comm. Math. Phys., 209, 691–728 (2000).

    MathSciNet  MATH  Google Scholar 

  36. M. Flato and C. Fronsdal, “Composite electrodynamics,” J. Geom. Phys., 5, 37–61 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Flato, C. Frønsdal, and D. Sternheimer, “Singletons, physics in AdS universe and oscillations of composite neutrinos,” Lett. Math. Phys., 48, 109–119 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Flato, L. K. Hadjiivanov, and I. T. Todorov, “Quantum deformations of singletons and of free zero-mass fields,” Found. Phys., 23, 571–586 (1993).

    Article  MathSciNet  Google Scholar 

  39. M. Flato, P. Hillion, and D. Sternheimer, “Un groupe de type Poincaré associé à l’équation de Dirac-Weyl,” C. R. Acad. Sci. Paris, 264, 85–88 (1967). M. Flato and P. Hillion, “Poincaré-like group associated with neutrino physics, and some applications,” Phys. Rev., D1, 1667–1673 (1970).

    Google Scholar 

  40. M. Flato, C. Piron, J. Gréa, D. Sternheimer, and J. P. Vigier, “Are Bell’s inequalities concerning hidden variables really conclusive?,” Helv. Phys. Acta, 48, No. 2, 219–225 (1975).

    MathSciNet  Google Scholar 

  41. M. Flato and D. Sternheimer, “Topological quantum groups, star products and their relations,” St.Petersburg Math. J., 6, 242–251 (1994).

    MathSciNet  Google Scholar 

  42. A. Froelicher and A. Nijenhuis, “A theorem on stability of complex structures,” Proc. Nat. Acad. Sci. USA, 43, 239–241 (1957).

    Article  MATH  Google Scholar 

  43. J. Fröhlich, “Atomism and quantization,” Talk at the Simonfest. Caltech, 27 March 2006; http://math.caltech.edu/SimonFest/Abstracts/frohlich abst.pdf. Research Group in Mathematical Physics (J. Fröhlich, A. Knowles, and A. Pizzo), “Atomism and quantization,” ETHZ preprint (September 2006), posted as mp_arc 06-323.

  44. C. Fronsdal, “Some ideas about quantization,” Rep. Math. Phys., 15, 111–145 (1978). F. Bayen and C. Fronsdal, “Quantization on the sphere,” J. Math. Phys., 22, 1345–1349 (1981).

    Article  MathSciNet  Google Scholar 

  45. C. Frønsdal (with an appendix by M. Kontsevich), “Quantization on curves,” to appear in Lett. Math. Phys.; arXiv:math-ph/0507021.

  46. I. Gelfand, V. Retakh, and M. Shubin, “Fedosov manifolds,” Adv. Math., 136, 104–140 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Gerstenhaber, “On the deformation of rings and algebras,” Ann. Math., 79, 59–103 (1964); (II), ibid., 84, 1–19 (1966); (IV), ibid., 99, 257–276 (1974).

    Article  MathSciNet  Google Scholar 

  48. M. Gerstenhaber, “On the deformation of sheaves of rings,” in: Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo (1969), pp. 149–157.

    Google Scholar 

  49. M. Gerstenhaber and S. D. Schack, “Algebraic cohomology and deformation theory,” in: Deformation Theory of Algebras and Structures and Applications, M. Hazewinkel and M. Gerstenhaber (eds.), NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht (1988), pp. 11–264.

    Google Scholar 

  50. J. W. v. Goethe, “Maximen und Reflexionen,” Nr. 1005, in: Werke, 60B (1827–1842); http://www.wissenim-netz.info/literatur/goethe/maximen/1-16.htm#1005.

  51. A. Groenewold, “On the principles of elementary quantum mechanics,” Physica, 12, 405–460 (1946).

    Article  MathSciNet  MATH  Google Scholar 

  52. G. ’t Hooft, “How does God play dice? (Pre-)determinism at the Planck scale,” in: Quantum [Un]speakables (Vienna, 2000), Springer, Berlin (2002), pp. 307–316. “Determinism beneath Quantum Mechanics,” in: Proceedings of the Conference “Quo Vadis Quantum Mechanics,” Philadelphia 2002; arXiv:quant-ph/0212095.

    Google Scholar 

  53. E. Ínönü and E. P. Wigner, “On the contraction of groups and their representations,” Proc. Nat. Acad. Sci. USA, 39, 510–524 (1953).

    Article  MATH  Google Scholar 

  54. M. Jimbo, “A q-difference algebra of \(\mathcal{U}(\mathfrak{g})\) and the Yang-Baxter equation,” Lett. Math. Phys., 10, 63–69 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  55. K. Kodaira and D. C. Spencer, “On deformations of complex analytic structures,” Ann. Math., 67, 328–466 (1958).

    Article  MathSciNet  Google Scholar 

  56. M. Kontsevich, “Deformation quantization of Poisson manifolds,” Lett. Math. Phys., 66, 157–216 (2003). “Operads and motives in deformation quantization,” Lett. Math. Phys., 48, 35–72 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Kontsevich, “Deformation quantization of algebraic varieties,” Lett. Math. Phys., 56, 271–294 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  58. B. Kostant, “Quantization and unitary representations,” Lect. Notes Math., 170, 87–208 (1970). “On the definition of quantization,” in: Géométrie Symplectique et Physique Mathématique (Colloq. Int. CNRS, No. 237), Éds. CNRS, Paris (1975), pp. 187–210. “Graded manifolds, graded Lie theory, and prequantization. Differential geometrical methods in mathematical physics,” Lect. Notes Math., 570, 177–306 (1977).

    Article  MathSciNet  Google Scholar 

  59. V. Mathai, R. B. Melrose, and I. M. Singer, “Fractional analytic index,” J. Diff. Geom., 74, 265–292 (2006); arXiv: math.DG/0402329.

    MathSciNet  MATH  Google Scholar 

  60. R. A. Minlos, “Felix Alexandrovich Berezin (A brief scientific biography),” in: Contemporary Mathematical Physics, F. A. Berezin Memorial Volume, R. L. Dobrushin, R. A. Minlos, M. A. Shubin, and A. M. Vershik (eds.), Amer. Math. Soc. Transl., Ser. 2, 175 (1996), pp. 1–13. Reproduced (with minor corrections) in Lett. Math. Phys., 74, 5–19 (2005).

  61. J. E. Moyal, “Quantum mechanics as a statistical theory,” Proc. Cambridge Phil. Soc., 45, 99–124 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  62. F. Nadaud, “Generalized deformations, Koszul resolutions, Moyal products,” Rev. Math. Phys., 10, No. 5, 685–704 (1998). Thèse, Dijon (janvier 2000).

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Nest and B. Tsygan, “Algebraic index theorem,” Comm. Math. Phys., 172, 223–262 (1995). “Algebraic index theorem for families,” Adv. Math., 113, 151–205 (1995). “Formal deformations of symplectic manifolds with boundary,” J. Reine Angew. Math., 481, 27–54 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  64. H. Omori, Y. Maeda, and A. Yoshioka, “Weyl manifolds and deformation quantization,” Adv. Math., 85, 225–255 (1991). “Existence of a closed star product,” Lett. Math. Phys., 26, 285–294 (1992).

    Article  MathSciNet  Google Scholar 

  65. Pankaj Sharan, “Star-product representation of path integrals,” Phys. Rev. D, 20, 414–418 (1979).

    Article  MathSciNet  Google Scholar 

  66. M. Rieffel, “Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance,” Mem. Amer. Math. Soc., 168, No. 796, 67–91 (2004).

    MathSciNet  Google Scholar 

  67. I. E. Segal, “A class of operator algebras which are determined by groups,” Duke Math. J., 18, 221–265 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  68. D. Sternheimer, “Deformation quantization: Twenty years after,” in: Particles, Fields, and Gravitation (Lodz 1998), J. Rembieliński (ed.), Amer. Inst. Phys., New York (1998), pp. 107–145. “In retrospect: A personal view on Moshé Flato’s scientific legacy,” in: Conférence Moshé Flato 1999, Math. Phys. Studies, 21, Kluwer Acad. Publ., Dordrecht (2000), pp. 31–416.

    Google Scholar 

  69. D. Sternheimer, “Quantization is deformation,” in: Noncommutative Geometry and Representation Theory in Mathematical Physics, J. Fuchs et al. (eds.), Contemp. Math., 391, Amer. Math. Soc., Providence, Rhode Island (2005), pp. 331–352.

    Google Scholar 

  70. D. Sternheimer, “Quantization: deformation and/or functor?,” Lett. Math. Phys., 74, 293–309 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  71. L. N. Trefethen and M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton Univ. Press, Princeton, New Jersey (2005).

    MATH  Google Scholar 

  72. H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York (1931), edited translation of Gruppentheorie und Quantenmechanik, Hirzel Verlag, Leipzig (1928). “Quantenmechanik und Gruppentheorie,” Z. Physik, 46, 1–46 (1927).

    MATH  Google Scholar 

  73. E. P. Wigner, “Quantum corrections for thermodynamic equilibrium,” Phys. Rev., 40, 749–759 (1932).

    Article  MATH  Google Scholar 

  74. N. M. J. Woodhouse, Geometric Quantization, 2nd edition, The Clarendon Press, Oxford Univ. Press, New York (1992).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to the memory of “Alik” Berezin

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 331, 2006, pp. 199–220.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sternheimer, D. Some reflections on mathematicians’ views of quantization. J Math Sci 141, 1494–1505 (2007). https://doi.org/10.1007/s10958-007-0054-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0054-0

Keywords

Navigation