Skip to main content
Log in

Quantization: Deformation and/or Functor?

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

After a short presentation of the difference in motivation between the Berezin and deformation quantization approaches, we start with a reminder of Berezin’s view of quantization as a functor followed by a brief overview of deformation quantization in contrast with the latter. We end by a short survey of two main avatars of deformation quantization, quantum groups and quantum spaces (especially noncommutative geometry) presented in that perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, G.S., Wolf, E.: Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics I, II, III. Phys. Rev. D2, 2161–2186, 2187–2205, 2206–2225 (1970)

  • Basart H., Flato M., Lichnerowicz A., Sternheimer D. (1984). Deformation theory applied to quantization and statistical mechanics. Lett. Math. Phys. 8, 483–494

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bayen F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization I. Deformations of symplectic structures. Ann. Phys. 111, 61–110; and II. Physical applications. ibid 111–151 (1978)

    Google Scholar 

  • Bayen F., Fronsdal C. (1981). Quantization on the sphere. J. Math. Phys. 22, 1345–1349

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Berezin, F.A.: The method of second quantization. Nauka, Moscow (1965) (English translation, Academic Press 1966)

  • Berezin, F.A.: Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38(5), 1116–1175 (1974) (English translation: Math. USSR-Izv. 8(5), 1109–1165 (1975))

  • Berezin, F.A.: Quantization in complex symmetric spaces. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 363–402, 472 (1975) (English translation: Math. USSR-Izv. 9, 341–379 (1976)) Mat. 39, 363–402, 472 (1975) (English translation: Math. USSR-Izv. 38, 1109–1165 (1975) 39, 341–379 (1976))

  • Berezin F.A. (1975). General concept of quantization. Comm. Math. Phys. 40, 153–174

    Article  ADS  MathSciNet  Google Scholar 

  • Berezin, F.A.: Feynman path integrals in a phase space. Usp. Fiz. Nauk 132(3), 493–548 (1980) (English translation: Sov. Phys. Usp. 23(11), 763–788 (1980))

  • Berezin F.A., Shubin M.A. (1991). The Schrödinger equation. pp. XI+555. Kluwer, Dordrecht

    Google Scholar 

  • Bonneau P., Flato M., Gerstenhaber M., Pinczon G. (1994). The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations. Comm. Math. Phys. 161, 125–156

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bonneau P., Gerstenhaber M., Giaquinto A., Sternheimer D. (2004). Quantum groups and deformation quantization: explicit approaches and implicit aspects. J. Math. Phys. 45, 3703–3741

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212, 591–611 (2000) (math.QA/9902090)

    Google Scholar 

  • Cattaneo, A.S., Felder, G.: On the globalization of Kontsevich’s star product and the perturbative Poisson sigma model. Prog. Theor. Phys. Suppl. 144, 38–53 (2001) (hep-th/0111028)

    Google Scholar 

  • Cattaneo, A.S.: On the integration of Poisson manifolds, Lie algebroids, and coisotropic submanifolds. Lett. Math. Phys. 67, 33–48 (2004) (math.SG/0308180)

    Google Scholar 

  • Connes A. (1994). Noncommutative geometry. Academic Press, San Diego

    MATH  Google Scholar 

  • Connes A. (1985). Noncommutative differential geometry. Inst. Hautes études Sci. Publ. Math. 62, 257–360

    Article  MathSciNet  Google Scholar 

  • Connes, A.: A short survey of noncommutative geometry. J. Math. Phys. 41, 3832–3866 (2000) (hep-th/0003006)

    Google Scholar 

  • Connes, A.: Cyclic cohomology, noncommutative geometry and quantum group symmetries. Noncommutative geometry, Lecture Notes in Mathematics, vol. 1831, pp. 1–71. Springer, Berlin Heidelberg New York (2004)

  • Connes, A., Dubois-Violette, M.: Moduli space and structure of noncommutative 3-spheres. Lett. Math. Phys. 66, 99–121 (2003) (See also math.QA/0511337)

    Google Scholar 

  • Connes A., Flato M., Sternheimer D. (1992). Closed star-products and cyclic cohomology. Lett. Math. Phys. 24, 1–12

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann–Hilbert problem. I: The Hopf algebra structure of graphs and the main theorem; II: The β-function, diffemorphisms and the renormalization group. Comm. Math. Phys. 210, 249–273 (2000) (hep-th/9912092); 216, 215–241 (2001) (hep-th/0003188)

    Google Scholar 

  • Connes, A., Kreimer, D.: From local perturbation theory to Hopf and Lie algebras of Feynman graphs, EuroConférence Moshé Flato 2000, Part I (Dijon). Lett. Math. Phys. 56, 3–15 (2001)

    Google Scholar 

  • Connes, A., Kreimer, D.: Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3, 411–433 (2002) (hep-th/0201157)

    Google Scholar 

  • De Wilde M., Lecomte P.B.A. (1983). Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7, 487–496

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dirac P.A.M. (1964). Lectures on quantum mechanics. Belfer Graduate School of Sciences Monograph Series No. 2. Yeshiva University, New York

    Google Scholar 

  • Dirac P.A.M. (1950). Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148

    MathSciNet  MATH  Google Scholar 

  • Dito J. (1990). Star-product approach to quantum field theory: the free scalar field. Lett. Math. Phys. 20, 125–134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dito J. (1992). Star-products and nonstandard quantization for K-G equation. J. Math. Phys. 33, 791–801

    Article  ADS  MathSciNet  Google Scholar 

  • Dito J. (1993). An example of cancellation of infinities in star-quantization of fields. Lett. Math. Phys. 27, 73–80

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dito J. (1993). Star-produits en dimension infinie : le cas de la théorie quantique des champs. Thesis, Université de Bourgogne, Dijon

  • Dito, G. (=J.): Deformation quantization of covariant fields. Deformation quantization (Strasbourg 2001), IRMA Lect. Math. Theor. Phys. 1, 55–66 (2002) Walter de Gruyter, Berlin (math.QA/0202271)

  • Dito, G., Sternheimer, D.: Deformation quantization: genesis, developments and metamorphoses, Deformation quantization (Strasbourg 2001). IRMA Lect. Math. Theor. Phys. 1, 9–54 (2002) Walter de Gruyter, Berlin (math.QA/0201168)

  • Douglas, M.R., Liu, H., Moore, G., Zwiebach, B.: Open string star as a continuous Moyal product. J. High Energy Phys. 0204(22), 27 (2002) (hep-th/0202087)

    Google Scholar 

  • Douglas, M.R., Nekrasov, N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977–1029 (2001) (hep-th/0106048)

    Google Scholar 

  • Drinfeld V.: Quantum groups. In: Proceedings of ICM86, Berkeley, vol. 1, pp. 101–110. American Mathematical Society, Providence (1987)

  • Fedosov B.V. (1994). A simple geometrical construction of deformation quantization. J. Diff. Geom. 40, 213–238

    MathSciNet  MATH  Google Scholar 

  • Fedosov B.V. (1996). Deformation quantization and index theory. Mathematical Topics 9. Akademie Verlag, Berlin

    Google Scholar 

  • Fedosov B.V. (2000). The Atiyah-Bott-Patodi method in deformation quantization. Comm. Math. Phys. 209, 691–728

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Flato M., Fronsdal C. (1988). Composite electrodynamics. J. Geom. Phys. 5, 37–61

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Flato M., Frønsdal C., Sternheimer D. (1999). Singletons, physics in AdS universe and oscillations of composite neutrinos. Lett. Math. Phys. 48, 109–119

    Article  MathSciNet  MATH  Google Scholar 

  • Flato M., Hadjiivanov L.K., Todorov I.T. (1993). Quantum deformations of singletons and of free zero-mass fields. Found. Phys. 23, 571–586

    Article  ADS  MathSciNet  Google Scholar 

  • Flato M., Hillion P., Sternheimer D. (1967). Un groupe de type Poincaré associé à l’équation de Dirac-Weyl. C.R. Acad. Sci. Paris Sér. A 264, 82–85

    MATH  Google Scholar 

  • Flato M., Hillion P. (1970). Poincaré-like group associated with neutrino physics, and some applications. Phys. Rev. D1, 1667–1673

    Article  ADS  MathSciNet  Google Scholar 

  • Flato M., Sternheimer D. (1994). Topological quantum groups, star products and their relations. St. Petersburg Math. J. (Algebra Anal.) 6, 242–251

    MathSciNet  Google Scholar 

  • Fronsdal C. (1978). Some ideas about quantization. Rep. Math. Phys. 15, 111–145

    Article  MathSciNet  ADS  Google Scholar 

  • Frønsdal, C. (with an appendix by Kontsevich, M.): Quantization on curves, math-ph/0507021 Lett. Math. Phys. (to appear)

  • Gelfand I., Retakh V., Shubin M. (1998). Fedosov manifolds. Adv. Math. 136, 104–140

    Article  MathSciNet  MATH  Google Scholar 

  • Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964); (II) ibid 84, 1–19 (1966), (IV) ibid. 99, 257–276 (1974)

  • Gerstenhaber, M.: On the deformation of sheaves of rings. Global Analysis (Papers in Honor of K. Kodaira) pp. 149–157, University of Tokyo Press, Tokyo (1969)

  • Gerstenhaber, M., Schack, S.D.: Algebraic cohomology and deformation theory. In: Hazewinkel, M., Gerstenhaber, M. (eds.) Deformation theory of algebras and structures and applications, NATO ASI Ser. C 247, pp. 11–264, Kluwer, Dordrecht (1988)

  • Groenewold A. (1946). On the principles of elementary quantum mechanics. Physica 12, 405–460

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ínönü E., Wigner E.P. (1953). On the contraction of groups and their representations. Proc. Nat. Acad. Sci. USA 39, 510–524

    Article  ADS  MATH  Google Scholar 

  • Jimbo M. (1985). A q-difference algebra of \({\cal U}(\frak{g})\) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kodaira K., Spencer D.C. (1958). On deformations of complex analytic structures. Ann. Math. 67, 328–466

    Article  MathSciNet  Google Scholar 

  • Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003) (q-alg/9709040)

    Google Scholar 

  • Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48, 35–72 (1999) (math.QA/9904055)

    Google Scholar 

  • Kontsevich, M.: Deformation quantization of algebraic varieties. Lett. Math. Phys. 56, 271–294 (2001) (math.AG/0106006)

    Google Scholar 

  • Kostant B. (1970). Quantization and unitary representations. Lect. Notes Math. 170, 87–208

    Article  MathSciNet  Google Scholar 

  • Kostant, B.: On the definition of quantization. In: Géométrie symplectique et physique mathématique (Colloq. Int. CNRS, N° 237), (éds) pp. 187–210 CNRS, Paris (1975)

  • Kostant B. (1977). Graded manifolds, graded Lie theory, and prequantization. Differential geometrical methods in mathematical physics. Lect. Notes Math. 570, 177–306

    Article  MathSciNet  Google Scholar 

  • Mathai, V., Melrose, R.B., Singer, I.M.: Fractional analytic index. math.DG/0402329

  • Minlos, R.A.: Felix Alexandrovich Berezin (A Brief Scientific Biography). Lett. Math. Phys. 74(1), 5–19 (2005) (Original publication in: Contemporary Mathematical Physics, American Mathematical Society Translations, Ser. 2, 175, Amer. Math. Soc., Providence, RI, pp. 1–13 (1996))

  • Moyal J.E. (1949). Quantum mechanics as a statistical theory. Proc. Cambridge Phil. Soc. 45, 99–124

    Article  MathSciNet  MATH  Google Scholar 

  • Nadaud, F.: Generalized deformations, Koszul resolutions, Moyal Products. Rev. Math. Phys. 10(5), 685–704 (1998) Thèse, Dijon (janvier 2000)

    Google Scholar 

  • Nest R., Tsygan B. (1995). Algebraic index theorem. Comm. Math. Phys. 172, 223–262

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Nest R., Tsygan B. (1995). Algebraic index theorem for families. Adv. Math. 113, 151–205

    Article  MathSciNet  MATH  Google Scholar 

  • Nest R., Tsygan B. (1996). Formal deformations of symplectic manifolds with boundary. J. Reine Angew. Math. 481, 27–54

    MathSciNet  MATH  Google Scholar 

  • Omori H., Maeda Y., Yoshioka A. (1991). Weyl manifolds and deformation quantization. Adv. Math. 85, 225–255

    Article  MathSciNet  Google Scholar 

  • Omori H., Maeda Y., Yoshioka A. (1992). Existence of a closed star product. Lett. Math. Phys. 26, 285–294

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pankaj Sharan. (1979). Star-product representation of path integrals. Phys. Rev. D 20, 414–418

    Article  MathSciNet  Google Scholar 

  • Segal I.E. (1951). A class of operator algebras which are determined by groups. Duke Math. J. 18, 221–265

    Article  MathSciNet  MATH  Google Scholar 

  • Sternheimer, D.: Deformation quantization: twenty years after. In: Rembieliński J., (ed.) Particles, Fields, and Gravitation (Łodz 1998) pp. 107–145. AIP Press, New York (1998) (math.QA/9809056)

  • Sternheimer, D.: In retrospect: a personal view on Moshé Flato’s scientific legacy. In: Conférence Moshé Flato 1999, Mathematical Physics Studies, vol. 21, pp. 31–41. Kluwer, Dordrecht (2000)

  • Sternheimer, D.: Quantization is deformation. In: Fuchs, J. et al. (eds.) Noncommutative geometry and representation theory in mathematical physics, Contemporary mathematics, vol. 391, pp. 331–352, American Mathematical Society (2005)

  • Weyl, H.: The theory of groups and quantum mechanics. Dover, New York (1931) edited translation of Gruppentheorie und Quantenmechanik, Hirzel Verlag, Leipzig (1928)

  • Weyl H. (1927). Quantenmechanik und Gruppentheorie. Z. Physik 46, 1–46

    Article  ADS  Google Scholar 

  • Wigner E.P. (1932). Quantum corrections for thermodynamic equilibrium. Phys. Rev. 40, 749–759

    Article  ADS  MATH  Google Scholar 

  • Woodhouse N.M.J. (1992). Geometric quantization. 2nd edn. Oxford Science Publications, Oxford Mathematical Monographs. Oxford University Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sternheimer.

Additional information

© by the author. This paper may be reproduced, in its entirety, for non-commercial purposes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sternheimer, D. Quantization: Deformation and/or Functor?. Lett Math Phys 74, 293–309 (2005). https://doi.org/10.1007/s11005-005-0028-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-005-0028-4

Keywords

Mathematics Subject Classifications (2000)

Navigation