Skip to main content

Advertisement

Log in

The influence of temperature, moisture, and eolian activity on Holocene lake development in West Greenland

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Holocene paleolimnological records (diatoms, organic content, spectrally inferred sediment chlorophyll-a) from three West Greenland lakes (~67°N) situated along a transect from the outer coast to a nunatak at the periphery of the Greenland Ice Sheet are used to explore the nature of regional postglacial lake development and its relationship to Holocene climate evolution. The lakes were deglaciated asynchronously by approximately 4 ka (earliest on the coast) and thus their sediment records document different starting points of Holocene ontogeny, both temporally and paleoclimatically. Despite similar time-transgressive characteristics of the diatom stratigraphies, overarching climatic factors, principally effective moisture, and eolian inputs, govern individual lake development. The transition to Neoglaciation between 5.6 and 4 ka BP marks a shift toward a cooler, moister, windier climate from the aridity and higher temperatures of the mid-Holocene (8–6 ka BP). A shift toward increased aridity, windiness, and eolian activity is documented in the interior lakes over the last 500 years. These lake records demonstrate the sensitivity of freshwater lakes in arid regions to changes in effective moisture and highlight the role of wind and eolian activity in Arctic lake environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott MB, Stafford TW Jr (1996) Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin Island, Canada. Quat Res 45:300–311

    Article  Google Scholar 

  • ACIA (2004) Impacts of a warming climate: arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Aebly F, Fritz SC (2009) The paleohydrology of west Greenland for the past 8000 years. Holocene 19:91–104

    Article  Google Scholar 

  • Anderson NJ, Leng MJ (2004) Increased aridity during the early Holocene in West Greenland inferred from stable isotopes in laminated-lake sediments. Quat Sci Rev 23:841–849

    Article  Google Scholar 

  • Anderson NJ, Harriman R, Ryves DB, Patrick ST (2001) Dominant factors controlling variability in the ionic composition of West Greenland lakes. Arct Antarct Alp Res 33:418–425

    Article  Google Scholar 

  • Anderson NJ, Brodersen KP, McGowan S, Johanssen L, Jeppesen E, Leng M (2008) Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (south-west Greenland). Ecosystems 11:307–324

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8

    Article  Google Scholar 

  • Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188

    Article  Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–318

    Article  Google Scholar 

  • Bigler C, Larocque I, Peglar SM, Birks HJB, Hall RI (2002) Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. Holocene 12:481–496

    Article  Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochron 5:512–518

    Article  Google Scholar 

  • Bradbury JP (1975) Diatom stratigraphy and human settlement in Minnesota. Geol Soc Am Spec Pap 171:1–74

    Google Scholar 

  • Brodersen KP, Anderson NJ (2002) Distribution of chironomids (Diptera) in low Arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshw Biol 47:1137–1157

    Article  Google Scholar 

  • Cappelen J, Jørgensen BV, Laursen EV, Stannius LS, Thomsen RS (2001) The observed climate of Greenland, 1958–1999—with climatological standard normals 1961–1990. Technical report 00-18 Danish Meteorological Institute

  • Cremer H, Melles M, Wagner B (2001) Holocene climate changes reflected in a diatom succession from Basaltsø, East Greenland. Can J Bot 79:649–656

    Google Scholar 

  • D’Andrea W, Huang Y, Fritz SC, Anderson NJ (2011) Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc Nat Acad Sci USA 108:9765–9769

    Article  Google Scholar 

  • Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow GD, Johnsen SJ, Hansen AW, Balling N (1998) Past temperatures directly from the Greenland Ice Sheet. Science 282:268–271

    Article  Google Scholar 

  • Deevey ES (1942) Studies on Connecticut lake sediments. III. The biostratonomy of Linsley Pond. Am J Sci 240:233–264

    Article  Google Scholar 

  • Engstrom DR, Hansen BCS (1985) Postglacial vegetation change and soil development in southeastern Labrador as inferred from pollen and chemical stratigraphy. Can J Bot 63:543–561

    Article  Google Scholar 

  • Engstrom DR, Fritz SC, Almendinger JW, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166

    Article  Google Scholar 

  • Escher A, Sorensen K, Zeck HP (1976) Nagssugtoqidian mobile belt in West Greenland. In: Escher A, Watt WS (eds) Geology of Greenland. Grønlands Geologiske Undersøgelse, København, pp 76–95

    Google Scholar 

  • Foged N (1953) Diatoms from west Greenland. Medd om Groenland 147:1–86

    Google Scholar 

  • Foged N (1955) Diatoms from Peary Land, North Greenland. Medd om Groenland 128(7):1–90

    Google Scholar 

  • Foged N (1972) The diatoms in four postglacial deposits in Greenland. Medd om Groenland 194(4):1–66

    Google Scholar 

  • Foged N (1977) The diatoms in four postglacial deposits at Godthabsfjord, West Greenland. Medd om Groenland 199(4):1–64

    Google Scholar 

  • Ford MS (1990) A 10 000-yr history of natural ecosystem acidification. Ecol Monogr 60:57–89

    Article  Google Scholar 

  • Fredskild B (1983) The Holocene development of some low and high arctic Greenland lakes. Hydrobiologia 103:217–224

    Article  Google Scholar 

  • Fredskild B (1985) Holocene pollen records from West Greenland. In: Andrews JT (ed) Quaternary environments. Eastern Canadian Arctic, Baffin Bay and western Greenland. Allen & Unwin, Boston, pp 641–681

  • Fritsch FN, Carlson RE (1980) Monotone piecewise cubic interpolation. SIAM J Numer Anal 17:238–246

    Article  Google Scholar 

  • Fritz SC, Juggins S, Engstrom DR (2004) Patterns of early lake evolution in boreal landscapes: a comparison of stratigraphic inferences with a modern chronosequence in Glacier Bay, Alaska. Holocene 14:828–840

    Article  Google Scholar 

  • Funder S, Weidick A (1991) Holocene boreal molluscs in Greenland—palaeoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 85:123–135

    Article  Google Scholar 

  • Gardner AS, Moholdt G, Wouters B, Wolken G, Burgess DO, Sharp MJ, Cogley G, Braun C, Labine C (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473:357–360

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35

    Article  Google Scholar 

  • Heggen MP, Birks HH, Anderson NJ (2010) Long-term ecosystem dynamics of a small lake and its catchment in west Greenland. Holocene 20:1207–1222

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in the Coupled Model Intercomparison Project. Clim Dyn 21:221–232

    Article  Google Scholar 

  • Kelly M (1985) A review of the Quaternary geology of western Greenland. In: Andrews JT (ed) Quaternary environments. Eastern Canadian Arctic, Baffin Bay and western Greenland, Allen & Unwin, Boston, pp 461–501

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1, teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, New York

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2, teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/2. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3, teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4, teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1-4. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Jena

  • Leng M, Anderson NJ (2003) Isotopic variations in modern lake waters from western Greenland. Holocene 13:605–611

    Article  Google Scholar 

  • Masson-Delmotte V, Jouzel J, Landais A, Stievenard M, Johnsen SJ, White JWC, Werner M, Sveinbjornsdottir A, Fuhrer K (2005) GRIP deuterium excess reveals rapid and orbital-scale changes in greenland moisture origin. Science 309:118–121

    Article  Google Scholar 

  • McGowan S, Ryves DB, Anderson NJ (2003) Holocene records of effective precipitation in West Greenland. Holocene 13:239–249

    Article  Google Scholar 

  • McGowan S, Juhler RK, Anderson NJ (2008) Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. J Paleolimnol 39:301–317

    Article  Google Scholar 

  • Michelutti N, Wolfe AP, Briner JP, Miller GH (2007) Climatically controlled chemical and biological development in Arctic lakes. J Geophys Res 112:G03002. doi:10.1029/2006JG000396

    Article  Google Scholar 

  • O’Brien SR, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow SI (1995) Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270:1962–1964

    Article  Google Scholar 

  • Pennington W (1943) Lake sediments: the bottom deposits of the North Basin of Windermere, with special reference to the diatom succession. New Phytol 42:1–27

    Article  Google Scholar 

  • Pennington W (1978) Responses of some British lakes to past changes in land use on their catchments. Verh Internat Verein Limnol 20:636–641

    Google Scholar 

  • Perren BB (2007) Holocene lake ontogeny and recent environmental change in West Greenland. Unpublished thesis, University of Toronto

  • Perren BB, Bradley RS, Francus P (2003) Rapid lacustrine response to recent high arctic warming: a diatom record from Sawtooth Lake, Ellesmere Island, Nunavut. Arct Antarct Alp Res 35(3):271–278

    Article  Google Scholar 

  • Perren BB, Douglas MSV, Anderson NJ (2009) Diatoms reveal complex spatial and temporal patterns of recent limnological change in West Greenland. J Paleolimnol 42:233–247

    Article  Google Scholar 

  • Pla S, Anderson NJ (2005) Environmental factors correlated with chrysophyte cyst assemblages in low arctic lakes of south-west Greenland. J Phycol 41:957–974

    Article  Google Scholar 

  • Renberg I (1990a) A 12,600 year perspective on the acidification of Lilla Öresjön, southwest Sweden. Phil Trans R Soc Lond B 327:357–361

    Article  Google Scholar 

  • Renberg I (1990b) A procedure for preparing large sets of diatom slides from sediment cores. J Paleolimnol 4:87–90

    Article  Google Scholar 

  • Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. doi:10.1029/2011gl046583

    Article  Google Scholar 

  • Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Chang Biol 14:1–15

    Google Scholar 

  • Ryves DB, McGowan S, Anderson NJ (2002) Development and evaluation of a diatom-conductivity model from lakes in West Greenland. Freshw Biol 47:995–1014

    Article  Google Scholar 

  • Saros JE, Michel TJ, Interlandi S, Wolfe AP (2005) Resource physiologies of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes:implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci 62:1681–1889

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of Arctic lakes. Proc Nat Acad Sci USA 102:4397–4402

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu P, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor T, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the IPCC Cambridge University Press, Cambridge, UK

  • van Tatenhove FG, Van der Meer JJM, Koster EA (1996) Implications for deglaciation chronology from new AMS-age determinations in central West Greenland. Quat Res 45:245–253

    Article  Google Scholar 

  • Vinther BM et al (2009) Holocene thinning of the Greenland ice sheet. Nature 461:385–388

    Article  Google Scholar 

  • Whitehead DR, Charles DF, Jackson ST, Smol JP, Engstrom DR (1989) The developmental history of Adirondack (NY) lakes. J Paleolimnol 2:185–206

    Article  Google Scholar 

  • Willemse NW, Koster EA, Hoogakker B, van Tatenhove FGM (2003) A continuous record of Holocene eolian activity in West Greenland. Quat Res 59:322–334

    Article  Google Scholar 

  • Wilson CR, Michelutti N, Cooke CA, Briner JP, Wolfe AP, Smol JP (2012) Arctic lake ontogeny across multiple interglacials. Quat Sci Rev 31:112–126

    Article  Google Scholar 

  • Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc Lond B Biol Sci 276:427–435

    Article  Google Scholar 

  • Wolfe AP (1996) Spatial patterns of modern diatom distribution and multiple paleolimnological records from a small non-glacial Arctic lake, Baffin Island, Northwest Territories. Can J Bot 74:345–359

    Article  Google Scholar 

  • Wolfe AP, Miller GH, Olsen CA, Forman SL, Doran PT, Holmgren SU (2004) Geochronology of high latitude lake sediments. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in arctic and antarctic lakes. Developments in paleoenvironmental research, vol 8. Springer, Dordrecht, pp 19–52

    Chapter  Google Scholar 

  • Wolfe AP, Vinebrooke RD, Michelutti N, Rivard B, Das B (2006) Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. J Paleolimnol 36:91–100

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF Grant 0081226 to SCF, and by a NSERC discovery grant to MSVD. 210Pb analyses were provided by Peter Appleby at the University of Liverpool. MS data were supplied by Amy Whittle (née Clarke) at the University of Liverpool. TOC and C:N data from ss49 were kindly provided by Billy D’Andrea. We thank Charly Massa for assistance with age-depth modelling and Alexander Wolfe for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca B. Perren.

Additional information

This is one of 18 papers published in a special issue edited by Darrell Kaufman, and dedicated to reconstructing Holocene climate and environmental change from Arctic lake sediments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perren, B.B., Anderson, N.J., Douglas, M.S.V. et al. The influence of temperature, moisture, and eolian activity on Holocene lake development in West Greenland. J Paleolimnol 48, 223–239 (2012). https://doi.org/10.1007/s10933-012-9613-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-012-9613-6

Keywords

Navigation