Skip to main content

Advertisement

Log in

Effects of climate change and variability on thermal regime and dissolved oxygen resources of oligotrophic lakes in the Adirondack Mountain region

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

An analysis of multidecadal (1994–2021) temperature and dissolved oxygen profiles revealed a generally consistent pattern of response to climate change among oligotrophic lakes in the Adirondack Mountain region. Regional increases in annual average air temperature (0.34 ± 0.09 °C per decade) were accompanied by warming and thinning of epilimnia, cooling and expansion of hypolimnia, and declining hypolimnetic dissolved oxygen. Lakes in this region are recovering from acidification and we hypothesize that associated increases in dissolved color have caused greater heat trapping in the surface layer and earlier onset of stratification. The combined effects of increasing air temperature and declining water clarity resulted in stronger thermal stratification and greater oxygen depletion in bottom waters. Although the lakes were clustered in a relatively small geographic region, we found considerable interlake variability in trends for epilimnetic temperature (−0.06 to 0.66 °C decade−1), hypolimnetic temperature (−0.44 to 0.31 °C decade−1), and hypolimnetic oxygen (−55 to 0.7 µg L−1 year−1). Lake bathymetry was a key variable determining the sensitivity of lakes to climate effects on oxygen resources. Lakes with thin hypolimnia exhibited low dissolved oxygen concentrations, which were exacerbated by strengthening of vertical temperature gradients and earlier onset of stratification. Photic depths are decreasing faster than mixing depths such that declines in photosynthesis may contribute to lower dissolved oxygen in deeper layers. We predict that with climate warming, fewer Adirondack lakes will provide suitable habitat for cold water fisheries such as brook trout due to decreasing hypolimnetic oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available from the authors upon request.

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  PubMed  PubMed Central  Google Scholar 

  • Arend KK, Beletsky D, DePinto JV, Ludsin SA, Roberts JJ, Rucinski DK, Scavia D, Schwab DJ, Hook TO (2011) Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshwat Biol 56:366–383

    Article  Google Scholar 

  • Asbury CE, Vertucci FA, Mattson MD, Likens GE (1989) Acidification of Adirondack lakes. Environ Sci Technol 23:362–365

    Article  CAS  Google Scholar 

  • Bartosiewicz M, Przytulska A, Lapierre JF, Laurion I, Lehmann M, Maranger RJ (2019) Hot tops, cold bottoms: synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol Oceanogr Let 4:132–144

    Article  CAS  Google Scholar 

  • Biddanda BA, Weinke AD, Kendall ST, Gereaux LC, Holcomb TM, Snider MJ, Dila DK, Long SA, VandenBerg C, Knapp K et al (2018) Chronicles of hypoxia: time-series buoy observations reveal annually recurring seasonal basin-wide hypoxia in Muskegon Lake—a Great Lakes Estuary. J Great Lakes Res 44:219–229

    Article  CAS  Google Scholar 

  • Bouffard D, Ackerman JD, Boegman L (2013) Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: hourly to seasonal patterns. Water Resour Res 49:2380–2394

    Article  CAS  Google Scholar 

  • Brakke DF, Landers DH, Eilers JM (1988) Chemical and physical characteristics of lakes in the northeastern United States. Environ Sci Technol 22:155–163

    Article  CAS  PubMed  Google Scholar 

  • Bukaveckas PA (2021) Changes in the acidity, DOC, and water clarity of Adirondack lakes over a 30-year span. Aquat Sci 83:50

    Article  CAS  Google Scholar 

  • Bukaveckas PA, Driscoll CT (1991a) Effects of whole-lake base addition on the optical properties of three clearwater acidic lakes. Can J Fish Aq Sci 48:1030–1040

    Article  Google Scholar 

  • Bukaveckas PA, Driscoll CT (1991b) Effects of whole-lake base addition on the thermal characteristics of three clearwater acidic lakes. Water Air Soil Pollut 59:23–39

    Article  CAS  Google Scholar 

  • Cornett RJ, Rigler FH (1979) Hypolimnetic oxygen deficits: their prediction and interpretation. Science 205:580–581

    Article  CAS  PubMed  Google Scholar 

  • Dokulil MT, Jagsch A, George GD, Anneville O, Jankowski T, Wahl B, Lenhart B, Blenckner T, Teubnerand K (2006) Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnol Oceanogr 51:2787–2793

    Article  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik L, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Driscoll CT, Newton RM, Gubala CP, Baker JP, Christensen SW (1991) Adirondack mountains. In: Charles DF (ed) Acidic deposition and aquatic ecosystems: regional case studies. Springer, Berlin, pp 133–202

    Chapter  Google Scholar 

  • Driscoll CT, Driscoll KM, Fakhraei H, Civerolo K (2016) Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmos Environ 146:5–14

    Article  CAS  Google Scholar 

  • Eilers JM, Selle AR (1991) Geographic overview of the regional case study areas. In: Charles DF (ed) Acidic deposition and aquatic ecosystems. Springer, New York, pp 107–125

    Chapter  Google Scholar 

  • Foley B, Jones ID, Maberly SC, Rippey B (2012) Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwat Biol 57:278–289

    Article  CAS  Google Scholar 

  • Goldstein RA, Chen CW, Gherini SA (1985) Integrated lake-watershed acidification study: summary. Water Air Soil Pollut 26:327–337

    Article  Google Scholar 

  • Gray E, Mackay EB, Elliott JA, Folkard AM, Jones ID (2020) Wide-spread inconsistency in estimation of lake mixed depth impacts interpretation of limnological processes. Water Res 168:115136

    Article  CAS  PubMed  Google Scholar 

  • Holgerson MA, Richardson DC, Roith J, Bortolotti LE, Finlay K, Hornbach DJ, Gurung K, Ness A, Andersen MR, Bansal S et al (2022) Classifying mixing regimes in ponds and shallow lakes. Water Resour Res 58:e2022WR032522

    Article  Google Scholar 

  • Jane SF, Hansen GJA, Kraemer BM, Leavitt PR, Mincer JL, North RL, Pilla RM, Stetler JT, Williamson CE, Woolway RI et al (2021) Widespread deoxygenation of temperate lakes. Nature. https://doi.org/10.1038/s41586-021-03550-y

    Article  PubMed  Google Scholar 

  • Jane SF, Mincer JL, Lau MP, Lewis ASL, Stetler JT, Rose KC (2022) Longer duration of seasonal stratification contributes to widespread increases in lake hypoxia and anoxia. Global Change Biol. https://doi.org/10.1111/gcb.16525

    Article  Google Scholar 

  • Jankowski T, Livingstone DM, Buhrer H, Forster R, Niederhauser P (2006) Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr 51:815–819

    Article  Google Scholar 

  • Jenny JP, Francus P, Normandeau A, Lapointe F, Perga ME, Ojala A, Schimmelmann A, Zolitschka B (2016) Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Global Change Biol 22:1481–1489

    Article  Google Scholar 

  • Jiang S, Hu T, Zhao W, Hu A, Zhu L, Wang J (2023) Increasing diversity and biotic homogenization of lake plankton during recovery from acidification. Sci Tot Environ 859:160215

    Article  CAS  Google Scholar 

  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM et al (2015) Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Let 42:4981–4988

    Article  Google Scholar 

  • Kraemer BM, Pilla RM, Woolway RI, Anneville O, Ban S, Colom-Montero W, Devlin SP, Dokulil MT, Gaiser EE, Hambright KD et al (2021) Climate change drives widespread shifts in lake thermal habitat. Nat Clim Change 11:521–529

    Article  Google Scholar 

  • Kraus RT, Knight CT, Farmer TM, Gorman AM, Collingsworth PD, Warren GJ, Kocovsky PM, Conroy JD (2015) Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears. Can J Fish Aq Sci 72:797–806

    Article  CAS  Google Scholar 

  • Ladwig R, Hanson PC, Dugan HA, Carey CC, Zhang Y, Shu L, Duffy CJ, Cobourn KM (2021) Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years. Hydrol Earth Syst Sci 25:1009–1032

    Article  CAS  Google Scholar 

  • Laxson C, Croote L, Stewart C, Regalado S, Kelting D (2019) The state of Hamilton County Lakes: a 25-year perspective, 1993–2017. Paul Smith’s College Adirondack Watershed Institute

  • Leach TH, Beisner BE, Carey CC, Pernica P, Rose KC, Huot Y, Brentrup JA, Domaizon I, Grossart HP, Ibelings BW et al (2017) Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: the relative importance of light and thermal stratification. Limnol Oceanogr 63:628–646

    Article  Google Scholar 

  • Maberly SC, O’Donnell RA, Woolway RI, Cutler MEJ, Gong M, Jones ID, Merchant CJ, Miller CA, Politi E, Scott EM et al (2020) Global lake thermal regions shift under climate change. Nature Comm 11:1232

    Article  CAS  Google Scholar 

  • Magee MR, Wu CH (2017) Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrol Earth Syst Sci 21:6253–6274

    Article  Google Scholar 

  • Mathews DA, Effler SW (2006) Long-term changes in the areal hypolimnetic oxygen deficit (AHOD) of Onondaga Lake: evidence of sediment feedback. Limnol Oceanogr 51:702–714

    Article  Google Scholar 

  • Momen B, Lawrence GB, Nierzwicki-Bauer SA, Sutherland JW, Eichler LW, Harrison JP, Boylen CW (2006) Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York. Ecosystems 9:1306–1317

    Article  CAS  Google Scholar 

  • Noges P, Noges T, Ghiani M, Parachchini B, Pinto Grande J, Sena F (2011) Morphometry and trophic state modify the thermal response of lakes to meteorological forcing. Hydrobiol 667:241–254

    Article  Google Scholar 

  • Nürnberg GK (1995) Quantifying anoxia in lakes. Limnol Oceanogr 40:1100–1111

    Article  Google Scholar 

  • O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, McIntyre PB, Kraemer BM et al (2015) Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett 42:10773–10781

    Article  Google Scholar 

  • Pilla RM, Williamson CE, Adamovich BV, Adrian R, Anneville O, Chandra S, Colom-Montero W, Devlin SP, Dix MA, Dokulil MT et al (2020) Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Sci Rep 10:20514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson DC, Melles SJ, Pilla RM, Hetherington AL, Knoll LB, Williamson CE, Kraemer BM, Jackson JR, Long EC, Moore K et al (2017) Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across northeastern North America (1975–2014). Water 9:442

    Article  Google Scholar 

  • Rippey B, McSorley C (2009) Oxygen depletion in lake hyolimnia. Limnol Oceanogr 54:905–916

    Article  CAS  Google Scholar 

  • Robinson JM, Josephson DC, Weidel BC, Kraft CE (2010) Influence of variable interannual summer water temperatures on brook trout growth, consumption, reproduction, and mortality in an unstratified Adirondack lake. Trans Am Fish Soc 139:685–699

    Article  Google Scholar 

  • Sondergaard M, Nielsen A, Skov C, Baktoft H, Reitzel K, Kragh T, Davidson TA (2023) Temporarily and frequently occurring summer stratification and its effects on nutrient dynamics, greenhouse gas emission and fish habitat use: a case study from Lake Ormstrup (Denmark). Hydrobiol 850:65–79

    Article  Google Scholar 

  • Strock KE, Nelson SJ, Kahl JS, Saros JE, McDowell WH (2014) Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeaster US. Environ Sci Technol 48:4681–4689

    Article  CAS  PubMed  Google Scholar 

  • Sutherland JW, Acker FW, Bloomfield JA, Boylen CW, Charles DF, Daniels RA, Eichler LW, Farrell JL, Feranec RS, Hare MP et al (2015) Brooktrout Lake case study: biotic recovery from acid deposition 20 years after the 1990 Clean Air Act amendments. Environ Sci Technol 49:2665–2674

    Article  CAS  PubMed  Google Scholar 

  • Warren DR, Kraft CE, Josephson D, Driscoll CT (2016) Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America. Global Change Biol. https://doi.org/10.1111/gcb.13568

    Article  Google Scholar 

  • Wilkinson GM, Cole JJ, Pace ML, Johnson RA, Kleinhans MJ (2015) Physical and biological contributions to metalimnetic oxygen maxima in lakes. Limnol Oceanogr 60:242–251

    Article  Google Scholar 

  • Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Article  Google Scholar 

  • Wilson HL, Ayala AI, Jones ID, Rolston A, Pierson D, De Eyto E, Grossart HP, Perga ME, Woolway RI, Jennings E (2020) Variability in epilimnion depth estimations in lakes. Hydrol Earth Syst Sci 24:5559–5577

    Article  CAS  Google Scholar 

  • Winslow LA, Read JS, Hansen GJA, Rose KC, Robertson DM (2017) Seasonality of change: summer warming rates do not fully represent effects of climate change on lake temperatures. Limnol Oceanogr 62:2168–2178

    Article  Google Scholar 

  • Winslow LA, Leach TH, Rose KC (2018) Global lake response to recent warming hiatus. Environ Res Lett 13:054005

    Article  Google Scholar 

  • Woolway RI, Merchant CJ (2017) Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci Rep 7:4130

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolway RI, Sharma S, Weyhenmeyer GA, Debolskiy A, Golub M, Mercado-Bettín D, Perroud M, Stepanenko V, Tan Z, Grant L et al (2021) Phenological shifts in lake stratification under climate change. Nat Commun 12:2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan LL, Jones JR (2020) Modeling hypolimnetic dissolved oxygen depletion using monitoring data. Can J Fish Aq Sci 77:814–823

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PAB conceptualized the study, CS collected the data, PAB and LB analyzed the data and prepared tables and figures, PAB wrote the first draft, and all authors contributed to the final draft.

Corresponding author

Correspondence to Paul A. Bukaveckas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukaveckas, P.A., Buikema, L. & Stewart, C. Effects of climate change and variability on thermal regime and dissolved oxygen resources of oligotrophic lakes in the Adirondack Mountain region. Aquat Sci 86, 9 (2024). https://doi.org/10.1007/s00027-023-01021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-023-01021-2

Keywords

Navigation