Skip to main content
Log in

Road Map for the Structure-Based Design of Selective Covalent HCV NS3/4A Protease Inhibitors

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Over the last 2 decades, covalent inhibitors have gained much popularity and is living up to its reputation as a powerful tool in drug discovery. Covalent inhibitors possess many significant advantages including increased biochemical efficiency, prolonged duration and the ability to target shallow, solvent exposed substrate-binding domains. However, rapidly mounting concerns over the potential toxicity, highly reactive nature and general lack of selectivity have negatively impacted covalent inhibitor development. Recently, a great deal of emphasis by the pharmaceutical industry has been placed toward the development of novel approaches to alleviate the major challenges experienced through covalent inhibition. This has unexpectedly led to the emergence of “selective” covalent inhibitors. The purpose of this review is not only to provide an overview from literature but to introduce a technical guidance as to how to initiate a systematic “road map” for the design of selective covalent inhibitors which we believe may assist in the design and development of optimized potential selective covalent HCV NS3/4A viral protease inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petruzziello A, Marigliano S, Loquercio G et al (2016) Global epidemiology of hepatitis C virus infection: an up-date of the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol 22:7824–7840. doi:10.3748/wjg.v22.i34.7824

    Article  Google Scholar 

  2. Soumana DI, Ali A, Schiffer CA (2014) Structural analysis of asunaprevir resistance in HCV NS3/4A protease. ACS Chem Biol 9:2485–2490. doi:10.1021/cb5006118

    Article  CAS  Google Scholar 

  3. Manns MP, Buti M, Gane E, Pawlotsky JM, Razavi H, Terrault N, Younossi Z (2017) Hepatitis C virus infection. Nat Rev Dis Prim. doi:10.1038/nrdp.2017.6

    Google Scholar 

  4. Villani R, Bellanti F, Serviddio G (2013) Treatment of chronic HCV infection in the era of protease inhibitors. In: Practical management of chronic viral hepatitis. InTech, Croatia, pp 167–184

    Google Scholar 

  5. Kalgutkar AS, Dalvie DK (2012) Drug discovery for a new generation of covalent drugs. Expert Opin Drug Discov 7:561–581. doi:10.1517/17460441.2012.688744

    Article  CAS  Google Scholar 

  6. Kumalo HM, Bhakat S, Soliman MES (2015) Theory and applications of covalent docking in drug discovery: merits and pitfalls. Molecules 20:1984–2000. doi:10.3390/molecules20021984

    Article  Google Scholar 

  7. Adeniyi AA, Muthusamy R, Soliman ME (2016) New drug design with covalent modifiers. Expert Opin Drug Discov 11:79–90. doi:10.1517/17460441.2016.1115478

    Article  CAS  Google Scholar 

  8. Awoonor-Williams E, Walsh AG, Rowley CN (2017) Modeling covalent-modifier drugs. Biochim Biophys Acta. doi:10.1016/j.bbapap.2017.05.009

    Google Scholar 

  9. Becker D, Kaczmarska Z, Arkona C, Schulz R, Tauber C, Wolber G, Hilgenfeld R, Coll M, Rademann J (2016) Irreversible inhibitors of the 3C protease of Coxsackie virus through templated assembly of protein-binding fragments. Nat Commun 7:12761. doi:10.1038/ncomms12761

    Article  CAS  Google Scholar 

  10. Zhu K, Borrelli KW, Greenwood JR et al (2014) Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. J Chem Inf Model 54:1932–1940. doi:10.1021/ci500118s

    Article  CAS  Google Scholar 

  11. Hagel M, Niu D, St Martin T et al (2011) Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine. Nat Chem Biol 7:22–24. doi:10.1038/nchembio.492

    Article  CAS  Google Scholar 

  12. Yao N, Reichert P, Taremi SS et al (1999) Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure 7:1353–1363. doi:10.1016/S0969-2126(00)80025-8

    Article  CAS  Google Scholar 

  13. Shiryaev SA, Thomsen ER, Cieplak P et al (2012) New details of HCV NS3/4A proteinase functionality revealed by a high-throughput cleavage assay. PLoS ONE 7:1–12. doi:10.1371/journal.pone.0035759

    Google Scholar 

  14. Hamad HA, Thurston J, Teague T et al (2016) The NS4A cofactor dependent enhancement of HCV NS3 protease activity correlates with a 4D geometrical measure of the catalytic triad region. PLoS ONE 11:e0168002. doi:10.1371/journal.pone.0168002

    Article  Google Scholar 

  15. Chevaliez S, Pawlotsky J-M (2006) HCV genome and life cycle. Hepat C Viruses Genomes Mol Biol 5–47

  16. Kim JL, Morgenstern KA, Lin C et al (1996) Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355. doi:10.1016/S0092-8674(00)81351-3

    Article  CAS  Google Scholar 

  17. Tanoury GJ, Eastham S, Harrison CL et al (2016) Telaprevir: from drug discovery to the manufacture of drug substance. In: Comprehensive accounts of pharmaceutical research and development: from discovery to late-stage process development, vol 1. American Chemical Society, Washington, DC. doi:10.1021/bk-2016-1239.ch012

    Google Scholar 

  18. Steinkühler C, Biasiol G, Brunetti M et al (1998) Product inhibition of the hepatitis C virus NS3 protease. BioChemistry 37:8899–8905. doi:10.1021/bi980313v

    Article  Google Scholar 

  19. Lamarre D, Anderson PC, Bailey M et al (2003) An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature. doi:10.1038/nature02099

    Google Scholar 

  20. Chen KX, Njoroge FG (2011) NS3 protease covalent Inhibitors. Hepatitis C Antiviral Drug Discov Dev

  21. Baillie TA (2016) Targeted covalent inhibitors for drug design. Angew Chem Int Ed 55:13408–13421. doi:10.1002/anie.201601091

    Article  CAS  Google Scholar 

  22. Swinney DC (2004) Opinion: biochemical mechanisms of drug action: what does it take for success?. Nat Rev Drug Discov 3:801–808. doi:10.1038/nrd1500

    Article  CAS  Google Scholar 

  23. Johnson DS, Weerapana E, Cravatt BF (2010) Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem 2:949–964. doi:10.4155/fmc.10.21

    Article  CAS  Google Scholar 

  24. Johansson MH (2012) Reversible michael additions: covalent inhibitors and prodrugs. Mini Rev Med Chem 12:1330–1344. doi:10.2174/13895575112091330

    CAS  Google Scholar 

  25. Hallenbeck KK, Turner DM, Renslo AR, Arkin MR (2017) Targeting non-catalytic cysteine residues through structure-guided drug discovery. Curr Top Med Chem 17:4–15

    Article  CAS  Google Scholar 

  26. Blake L, Soliman MES (2014) Identification of irreversible protein splicing inhibitors as potential anti-TB drugs: insight from hybrid non-covalent/covalent docking virtual screening and molecular dynamics simulations. Med Chem Res 23:2312–2323. doi:10.1007/s00044-013-0822-y

    Article  CAS  Google Scholar 

  27. Rose PW, Bi C, Bluhm WF et al (2013) The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 41:D475–D482. doi:10.1093/nar/gks1200

    Article  CAS  Google Scholar 

  28. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi:10.1038/msb.2011.75

    Article  Google Scholar 

  29. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  Google Scholar 

  30. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi:10.1093/nar/gkf436

    Article  CAS  Google Scholar 

  31. Papadopoulos JS, Agarwala R (2007) COBALT: Constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079. doi:10.1093/bioinformatics/btm076

    Article  CAS  Google Scholar 

  32. Di Tommaso P, Moretti S, Xenarios I et al (2011) T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. doi:10.1093/nar/gkr245

    Google Scholar 

  33. Källberg M, Wang H, Wang S et al (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522. doi:10.1038/nprot.2012.085

    Article  Google Scholar 

  34. Fiser A, Šali A (2003) MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491. doi:10.1016/S0076-6879(03)74020-8

    Article  CAS  Google Scholar 

  35. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. doi:10.1093/bioinformatics/bti770

    Article  CAS  Google Scholar 

  36. Huang B (2009) MetaPocket: a meta approach to improve protein ligand binding site prediction. Omi A J Integr Biol 13:325–330. doi:10.1089/omi.2009.0045

    Article  CAS  Google Scholar 

  37. Hernandez M, Ghersi D, Sanchez R (2009) SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res 37:W413–W416. doi:10.1093/nar/gkp281

    Article  CAS  Google Scholar 

  38. Wass MN, Kelley LA, Sternberg MJE (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38:gkq406. doi:10.1093/nar/gkq406

    Article  Google Scholar 

  39. Dundas J, Ouyang Z, Tseng J et al (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:116–118. doi:10.1093/nar/gkl282

    Article  Google Scholar 

  40. Weisel M, Proschak E, Schneider G (2007) PocketPicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1:7. doi:10.1186/1752-153X-1-7

    Article  Google Scholar 

  41. Dessailly BH, Lensink MF, Orengo CA, Wodak SJ (2008) LigASite: a database of biologically relevant binding sites in proteins with known apo-structures. Nucleic Acids Res. doi:10.1093/nar/gkm839

    Google Scholar 

  42. Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci USA 105:129–134. doi:10.1073/pnas.0707684105

    Article  CAS  Google Scholar 

  43. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  Google Scholar 

  44. Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. doi:10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  46. DeLano WL (2014) The PyMOL molecular graphics system, Version 1.8. Schrödinger LLC, New York. http://www.pymol.org. doi:10.1038/hr.2014.17

  47. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768. doi:10.1021/ci3001277

    Article  CAS  Google Scholar 

  48. Xie X-QS (2010) Exploiting PubChem for virtual screening. Expert Opin Drug Discov 5:1205–1220. doi:10.1517/17460441.2010.524924

    Article  CAS  Google Scholar 

  49. Koes DR, Camacho CJ (2012) ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res. doi:10.1093/nar/gks378

    Google Scholar 

  50. Pence HE, Williams A (2010) Chemspider: an online chemical information resource. J Chem Educ 87:1123–1124. doi:10.1021/ed100697w

    Article  CAS  Google Scholar 

  51. Wishart DS (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672. doi:10.1093/nar/gkj067

    Article  CAS  Google Scholar 

  52. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. doi:10.1093/nar/gkr777

    Google Scholar 

  53. Cosconati S, Forli S, Perryman AL et al (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov 5:597–607. doi:10.1517/17460441.2010.484460

    Article  CAS  Google Scholar 

  54. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334

    CAS  Google Scholar 

  55. Ouyang X, Zhou S, Su CTT et al (2013) CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J Comput Chem 34:326–336. doi:10.1002/jcc.23136

    Article  CAS  Google Scholar 

  56. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins Struct Funct Genet 52:609–623. doi:10.1002/prot.10465

    Article  CAS  Google Scholar 

  57. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897

    Article  CAS  Google Scholar 

  58. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196. doi:10.1021/jm051256o

    Article  CAS  Google Scholar 

  59. Schmidt B (2014) DOCKTITE: a highly versatile step-by-step workflow for covalent docking and virtual screening in MOE. J Chem Inf Model. doi:10.1021/ci500681r

    Google Scholar 

  60. Götz AW, Clark MA, Walker RC (2014) An extensible interface for QM/MM molecular dynamics simulations with AMBER. J Comput Chem 35:95–108. doi:10.1002/jcc.23444

    Article  Google Scholar 

  61. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3:198–210. doi:10.1002/wcms.1121

    Article  CAS  Google Scholar 

  62. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291

    Article  Google Scholar 

  63. Velde GTE, Bickelhaupt FM, Baerends EJ et al (2001) Chemistry with ADF. J Comput Chem 22:931–967. doi:10.1002/jcc.1056

    Article  Google Scholar 

  64. Valiev M, Bylaska EJ, Govind N et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489. doi:10.1016/j.cpc.2010.04.018

    Article  CAS  Google Scholar 

  65. Woodcock HL, Hodošček M, Gilbert ATB et al (2007) Interfacing Q-Chem and CHARMM to perform QM/MM reaction path calculations. J Comput Chem 28:1485–1502. doi:10.1002/jcc.20587

    Article  CAS  Google Scholar 

  66. Metz S, Kästner J, Sokol AA et al (2014) ChemShell-a modular software package for QM/MM simulations. Wiley Interdiscip Rev Comput Mol Sci 4:101–110. doi:10.1002/wcms.1163

    Article  CAS  Google Scholar 

  67. Ward RA, Colclough N, Challinor M et al (2015) Structure-guided design of highly selective and potent covalent inhibitors of ERK1/2. J Med Chem 58:4790–4801. doi:10.1021/acs.jmedchem.5b00466

    Article  CAS  Google Scholar 

  68. Xiao C, Zhang Y (2007) Design-atom approach for the quantum mechanical/molecular mechanical covalent boundary: a design-carbon atom with five valence electrons. J Chem Phys 127:1–25. doi:10.1063/1.2774980

    Google Scholar 

  69. Allen M (2004) Introduction to molecular dynamics simulation. Comput Soft Matter 23:1–28. doi:10.1016/j.cplett.2006.06.020

    Google Scholar 

  70. Groenhof G (2013) Introduction to QM/MM simulations. In: Biomolecular simulations: methods and protocols. Springer, New York, pp 43–66

    Google Scholar 

  71. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chemie Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  72. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9:646–652. doi:10.1038/nsb0902-646

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Research Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. S. Soliman.

Ethics declarations

Conflict of interest

Authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shunmugam, L., Ramharack, P. & Soliman, M.E.S. Road Map for the Structure-Based Design of Selective Covalent HCV NS3/4A Protease Inhibitors. Protein J 36, 397–406 (2017). https://doi.org/10.1007/s10930-017-9736-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9736-8

Keywords

Navigation