Skip to main content
Log in

Waterborne Poly(urethane-urea)s Nanocomposites Reinforced with Clay, Reduced Graphene Oxide and Respective Hybrids: Synthesis, Stability and Structural Characterization

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Nanocomposites based on waterborne poly(urethane-urea)s (NWPUU) containing hydrophilic montmorillonite (MMT) clay, reduced graphene oxide (rGO) or MMT/rGO hybrids were produced by a green synthesis method. Polymer matrices were based on poly(ethylene glycol-block-propylene glycol) (PEG-b-PPG) (with different contents of PEG-based segments), poly(propylene glycol) (PPG), isophorone diisocyanate (IPDI), dimethylolpropionic acid (DMPA) and hydrazine. Aqueous dispersions were characterized in terms of particle hydrodynamic diameter (DH) and rheological parameters and respective cast films were investigated by X-ray diffraction (XRD), low-field nuclear magnetic resonance (NMR) relaxometry and Fourier-transform infrared spectrometry (FTIR). Pseudoplastic dispersions with DH < 200 nm were stable for more than 12 months. The formation of exfoliated structures suggested the homogeneous nanodispersion of MMT silicate layers and rGO nanosheets. MMT/rGO synergism and layer-to-layer interactions suggested segregation of phases. Hydrogen bonds between polar groups of nanoloads and rigid segments of WPUU influenced the structure and molecular dynamics of the chains.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li R, Shan Z (2018) Polym Test 69:125

    CAS  Google Scholar 

  2. Fuensanta M, Jofre-Reche JA, Rodríguez-Llansola F, Costa V, Iglesias JI, Martín-Martínez JM (2017) Prog Org Coat 112:141

    CAS  Google Scholar 

  3. Xi T, Tang L, Hao W, Yao L, Cui P (2018) RSC Adv 8:7792

    CAS  Google Scholar 

  4. Reis RA, Pereira JHC, Campos ACC, Barboza EM, Delpech MC, Cesar DV, Dahmouche K, Bandeira CF (2017) J Appl Polym Sci 135:46003

    Google Scholar 

  5. Isfahani AP, Sadeghi M, Wakimoto K, Gibbons AH, Bagheri R, Sivaniah E, Ghalei B (2017) J Membr Sci 542:143

    CAS  Google Scholar 

  6. Hsu SH, Dai LG, Hung YM, Dai NT (2018) Int J Nanomed 13:5485

    CAS  Google Scholar 

  7. Vieira IRS, Miranda GS, Ricci-Junior E, Delpech MC (2019) e-Polymers 19:168

    Google Scholar 

  8. Bahadur A, Saeed A, Iqbal S, Shoaib M, Rahman MS, Bashir MI, Asghar M, Ali MA, Mahmood T (2017) React Funct Polym 119:57

    CAS  Google Scholar 

  9. Miranda GS, Delpech MC, Reis RA, Garcia CP (2015) Sci Adv Mater 7:2557

    CAS  Google Scholar 

  10. Santamaria-Echart A, Fernandes I, Saralegi A, Costa MRPFN, Barreiro F, Corcuera MA, Eceiza A (2016) J Colloid Interface Sci 476:184

    CAS  PubMed  Google Scholar 

  11. Song H, Wang M, Wang Y, Zhang Y, Umar A, Guo Z (2017) Sci Adv Mater 9:1895

    CAS  Google Scholar 

  12. Barboza EM, Delpech MC, Garcia MEF, Pimenta FD (2014) Polímeros 24:94

    CAS  Google Scholar 

  13. Panda SS, Panda BP, Mohanty S, Nayak SK (2017) J Coat Technol Res 14:377

    CAS  Google Scholar 

  14. Barick AK, Tripathy DK (2010) J Appl Polym Sci 117:639

    CAS  Google Scholar 

  15. Wan T, Chen D (2018) Prog Org Coat 12:73

    Google Scholar 

  16. Zhang S, Zhang D, Li Z, Yang Y, Sun M, Kong Z, Wang Y, Bai H, Dong W (2018) J Coat Technol Res 15:1333

    CAS  Google Scholar 

  17. Wang S, Li S, Hou C, Ma G, Wang H, Wu J, Hao X, Zhang H (2018) J Appl Polym Sci 135:46757

    Google Scholar 

  18. Verma G, Kaushik A, Ghosh AK (2013) Prog Org Coat 76:1046

    CAS  Google Scholar 

  19. Russo P, Acierno D, Capezzuto F, Buonocore GG, Di Maio L, Lavorgna M (2015) AIP Conf Proc 1695:020030

    Google Scholar 

  20. Yousefi N, Gudarzi MM, Zheng Q, Lin X, Shen X, Jia J, Sharif F, Kim JK (2013) Compos A 49:42

    CAS  Google Scholar 

  21. Appel AK, Thomann R, Mülhaupt R (2012) Polymer 53:4931

    CAS  Google Scholar 

  22. Kim H, Miura Y, Macosko CW (2010) Chem Mater 22:3441

    CAS  Google Scholar 

  23. Rafiemanzelat F, Adli V, Mallakpour S (2015) Des Monomers Polym 18:303

    CAS  Google Scholar 

  24. Tien YI, Wei KH (2001) Polymer 42:3213

    CAS  Google Scholar 

  25. Sheng D, Tan J, Liu X, Wang P, Yang Y (2011) J Mater Sci 46:6508

    CAS  Google Scholar 

  26. Lee HT, Hwang JJ, Liu HJ (2006) J Polym Sci A 44:5801

    CAS  Google Scholar 

  27. Taheri S, Sadeghi GMM (2015) Appl Clay Sci 114:430

    CAS  Google Scholar 

  28. Dimitry OI, Abdeen ZI, Ismail EA, Saad ALG (2010) J Polym Res 17:801

    CAS  Google Scholar 

  29. Rahman MM (2017) J Coat Technol Res 14:1357

    CAS  Google Scholar 

  30. Romani EC, Nardecchia S, Vilani C, Qi S, Dong H, Freire JFL (2018) J Coat Technol Res 15:1371

    CAS  Google Scholar 

  31. Strankowski M, Wlodarczyk D, Piszczyk L, Strankowska J (2016) J Spectrosc 2016:1

    Google Scholar 

  32. Sahoo G, Sarkar N, Swain SK (2018) Appl Clay Sci 162:69

    CAS  Google Scholar 

  33. Wang F, Wang M, Shao Z (2018) Cellulose 25:7143

    CAS  Google Scholar 

  34. Vermisoglou EC, Giannakopoulou T, Todorova N, Vaimakis T, Boukos N, Petridis D, Trapalis C (2018) J Nanosci Nanotechnol 18:4684

    CAS  PubMed  Google Scholar 

  35. Chen GG, Hu YJ, Peng F, Bian J, Li MF, Yao CL, Sun RC (2018) Chem Eng J 337:436

    CAS  Google Scholar 

  36. Delpech MC, Miranda GS (2012) Cent Eur J Eng 2:231

    CAS  Google Scholar 

  37. Santos CC, Delpech MC, Coutinho FMB (2009) J Mater Sci 44:1317

    CAS  Google Scholar 

  38. Coutinho FMB, Delpech MC, Santos CC, Almeida RBL (2008) Quím Nova 31:1437

    CAS  Google Scholar 

  39. Delpech MC, Miranda GS, Santos WLE (2011) Polímeros 21:315

    CAS  Google Scholar 

  40. Delpech MC, Coutinho FMB (2000) Polym Test 19:939

    CAS  Google Scholar 

  41. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Alonso MH, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Chem Mater 19:4396

    CAS  Google Scholar 

  42. Serkis M, Poręba R, Hodan J, Kredatusová J, Špírková M (2015) J Appl Polym Sci 132:42672

    Google Scholar 

  43. Zhang F, Wei X (2018) J Coat Technol Res 15:141

    CAS  Google Scholar 

  44. Silva PSRC, Menezes LR, Tavares MIB (2016) Mater Sci Appl 7:150

    Google Scholar 

  45. Monteiro MSSB, Rodrigues CL, Neto RPR, Tavares MIB (2012) J Nanosci Nanotechnol 12:7307

    CAS  PubMed  Google Scholar 

  46. Silva GR, Silva-Cunha Júnior A, Behar-Cohen F, Ayres E, Oréfice RL (2011) Mater Sci Eng C 31:414

    Google Scholar 

  47. Pavličević J, Špírková M, Jovičić M, Bera O, Poręba R, Budinski-Simendić J (2013) Compos B 45:232

    Google Scholar 

  48. Ayres E, Oréfice RL (2007) Polímeros 17:339

    CAS  Google Scholar 

  49. Bullermann J, Friebel S, Salthammer T, Spohnholz R (2013) Prog Org Coat 76:609

    CAS  Google Scholar 

  50. Nanda AK, Wicks DA (2006) Polymer 47:1805

    CAS  Google Scholar 

  51. Barthel MJ, Schacher FH, Schubert US (2014) Polym Chem 5:2647

    CAS  Google Scholar 

  52. Loiola LMD, Más BA, Duek EAR, Felisberti MI (2015) Eur Polym J 68:618

    CAS  Google Scholar 

  53. Ocepek M, Zabret J, Kecelj J, Venturini P, Golob J (2015) Mater Technol 49:495

    CAS  Google Scholar 

  54. Chen TK, Tien YI, Wei KH (2000) Polymer 41:1345

    CAS  Google Scholar 

  55. D’almeida AR, Dias ML (1997) Polym Degrad Stab 56:331

    Google Scholar 

  56. Mumtaz F, Zuber M, Zia KM, Jamil T, Hussain R (2013) Korean J Chem Eng 30:2259

    CAS  Google Scholar 

  57. Liu N, Zhao Y, Kang M, Wang J, Wang X, Feng Y, Li Q (2015) Prog Org Coat 82:46

    CAS  Google Scholar 

  58. Brito LM, Sebastião PJ, Tavares MIB (2015) Polym Test 45:161

    CAS  Google Scholar 

  59. Maji PK, Guchhait PK, Bhowmick AK (2008) ACS Appl Mater Interfaces 1:289

    Google Scholar 

  60. Rodrigues EJDR, Nascimento SA, Tavares MI, Merat PP (2012) Polímeros 22:436

    CAS  Google Scholar 

  61. Guseva EN, Zuev VV (2016) Fuller Nanotub Carbon Nanostruct 24:474

    CAS  Google Scholar 

  62. An YX, Qu WJ, Yu PZ, Lü JG (2018) Petrol Sci 15:366

    CAS  Google Scholar 

  63. Silva MAD, Tavares MI, Nascimento SA, Rodrigues EJDR (2012) Polímeros 22:481

    Google Scholar 

  64. Jena KK, Chattopadhyay DK, Raju KVSN (2007) Eur Polym J 43:1825

    CAS  Google Scholar 

  65. Dan CH, Lee MH, Kim YD, Min BH, Kim JH (2006) Polymer 47:6718

    CAS  Google Scholar 

  66. Pattanayak A, Jana SC (2005) Polymer 46:3275

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), for finantial support. Also thank Centro Técnico Aeroespacial (CTA), Dow Brasil, Bentonita União do Nordeste S.A. and Grafite do Brasil for the donation of materials to execution out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Cerqueira Delpech.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, I.R.S., Costa, L.d.F.d.O., Miranda, G.d.S. et al. Waterborne Poly(urethane-urea)s Nanocomposites Reinforced with Clay, Reduced Graphene Oxide and Respective Hybrids: Synthesis, Stability and Structural Characterization. J Polym Environ 28, 74–90 (2020). https://doi.org/10.1007/s10924-019-01584-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01584-y

Keywords

Navigation