Skip to main content
Log in

Superconvergence Analysis and PPR Recovery of Arbitrary Order Edge Elements for Maxwell’s Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we propose a practical scheme for constructing global superconvergent approximations for Maxwell’s equations in both two and three dimensions. Superconvergence of order \(O(h^{p+1})\) is established in a discrete norm. This superconvergence result, combined with the polynomial-preserving recovery postprocessing technique, leads to global superconvergence of order \(O(h^{p+1})\) for recovered quantities in energy norms. Numerical experiments are provided to confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Babus̆ka, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K.: Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of laplace’s, poisson’s, and the elasticity equations. Numer. Methods Partial Differ. Equ. 12(12), 347–392 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Cao, W., Shu, C.W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53(4), 1651–1671 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 52(5), 2555–2573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C.: Structure Theory of Superconvergence of Finite Elements. Hunan Science and Technology Press, Changsha (2001) (in Chinese)

  6. Chen, H., Zhang, Z., Zou, Q.: A recovery based linear finite element method for 1D bi-harmonic problems. J. Sci. Comput. 68(1), 375–394 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Franz, S., Roos, H.G.: Superconvergence of a Galerkin FEM for higher-order elements in convection–diffusion problems. Numer. Math. Theory Methods Appl. 7(3), 356–373 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Fuentes, F., Keith, B., Demkowicz, L., Nagaraj, S.: Orientation embedded high order shape functions for the exact sequence elements of all shapes. Comput. Math. Appl. 70(4), 353–458 (2015)

    Article  MathSciNet  Google Scholar 

  9. Huang, Y., Li, J., Lin, Q.: Superconvergence analysis for time-dependent Maxwell’s equations in metamaterials. Numer. Methods Partial Differ. Equ. 28(6), 1794–1816 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, Y., Li, J., Wu, C.: Averaging for superconvergence: verification and application of 2D edge elements to Maxwell’s equations in metamaterials. Comput. Methods Appl. Mech. Eng. 255, 121–132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, Y., Li, J., Wu, C., Yang, W.: Superconvergence analysis for linear tetrahedral edge elements. J. Sci. Comput. 62(1), 122–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, Y., Li, J., Yang, W., Sun, S.: Superconvergence of mixed finite element approximations to 3-D Maxwell’s equations in metamaterials. J. Comput. Phys. 230(22), 8275–8289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, Q., Yan, N.: The Construction and Analysis of Efficient Finite Element. Hebei University Press, Baoding (1996) (in Chinese)

  14. Monk, P.: A finite element method for approximating the time-harmonic Maxwell equations. Numerische Mathematik 63(1), 243–261 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Monk, P.: Superconvergence of finite element approximations to Maxwell’s equations. Numer. Methods Partial Differ. Equ. 10(6), 793–812 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42(4), 1780–1800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Naga, A., Zhang, Z.: The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete Contin. Dyn. Syst. Ser. B 5(3), 769–798 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^3\). Numerische Mathematik 35(1), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nédélec, J.C.: A new family of mixed finite elements in \(\mathbb{R}^3\). Numerische Mathematik 50(1), 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, M., Li, J., Wang, P., Zhang, Z.: Superconvergence analysis of high-order rectangular edge elements for time-harmonic Maxwell’s equations. J. Sci. Comput. 75(3), 1–26 (2017)

    MathSciNet  Google Scholar 

  21. Wahlbin, L.B.: Superconvergence in Galerkin finite element methods. Lect. Notes Math. 1605(3), 269–285 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73(247), 1139–1152 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Z.: Finite element superconvergence approximation for one-dimensional singularly perturbed problems. Numer. Methods Partial Differ. Equ. 18(3), 374–395 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Z.: Recovery techniques in finite element methods. In: Tang, T., Xu, J. (eds.). Mathematics Monograph Series 6, vol. 1, no. 3, pp. 333–412. Science Publisher, Beijing (2007)

  25. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26(4), 1192–1213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Additional information

The research of this work was supported in part by the National Natural Science Foundation of China (NSFC 11471031, NSFC 91430216, and NASF U1530401) and the U.S. National Science Foundation (DMS–1419040).

Appendix

Appendix

The other interpolation coefficients in 3D are listed as

$$\begin{aligned} C_{ijk}^2= & {} {\left\{ \begin{array}{ll} \frac{\int _{y_c-h_y}^{y_c+h_y}E_2(x_c+(-1)^{i+1} h_x, y, z_c+(-1)^{j+1}h_z) L_k(y)\text {d}y}{(L_k,L_k)},&{}0\le i,j \le 1,\\ \frac{\int _{y_c-h_y}^{y_c+h_y}\int _{z_c-h_z}^{z_c+h_z}\frac{\partial E_2}{\partial z}(x_c+(-1)^{i+1} h_x,y,z)\phi _j'(z)L_k(y)\text {d}y\text {d}z}{(\phi _j',\phi _j')(L_k,L_k)},&{}0\le i \le 1,\ 2\le j\le p,\\ \frac{\int _{x_c-h_x}^{x_c+h_x}\int _{y_c-h_y}^{y_c+h_y}\frac{\partial E_2}{\partial x}(x,y,z_c+(-1)^{i+1} h_z)\phi _i'(x)L_k(y)\text {d}x\text {d}y}{(\phi _i',\phi _i')(L_k,L_k)},&{}0\le j \le 1,\ 2\le i\le p,\\ \frac{\int _{K}\frac{\partial ^2 E_2}{\partial x \partial z}(x,y,z)\phi _i'(x)\phi _j'(z)L_k(y)\text {d}V}{(\phi _i',\phi _i')(\phi _j',\phi _j')(L_k,L_k)},&{} 2\le i,j\le p, \end{array}\right. }\\ C_{ijk}^3= & {} {\left\{ \begin{array}{ll} \frac{\int _{z_c-h_z}^{z_c+h_z}E_3(x_c+(-1)^{i+1} h_x, y_c+(-1)^{j+1}h_y,z) L_k(z)\text {d}z}{(L_k,L_k)},&{} 0\le i,j \le 1,\\ \frac{\int _{y_c-h_y}^{y_c+h_y}\int _{z_c-h_z}^{z_c+h_z}\frac{\partial E_3}{\partial y}(x_c+(-1)^{i+1} h_x,y,z)\phi _j'(y)L_k(z)\text {d}y\text {d}z}{(\phi _j',\phi _j')(L_k,L_k)},&{}0\le i \le 1,\ 2\le j\le p,\\ \frac{\int _{x_c-h_x}^{x_c+h_x}\int _{z_c-h_z}^{z_c+h_z}\frac{\partial E_3}{\partial x}(x,y_c+(-1)^{i+1} h_y,z)\phi _i'(x)L_k(z)\text {d}x\text {d}z}{(\phi _i',\phi _i')(L_k,L_k)},&{}0\le j \le 1,\ 2\le i\le p,\\ \frac{\int _{K}\frac{\partial ^2 E_3}{\partial x \partial y}(x,y,z)\phi _i'(x)\phi _j'(y)L_k(z)\text {d}V}{(\phi _i',\phi _i')(\phi _j',\phi _j')(L_k,L_k)},&{} 2\le i,j\le p, \end{array}\right. } \end{aligned}$$

with \(0\le k\le p-1\).

$$\begin{aligned} D_{ijk}^2= & {} {\left\{ \begin{array}{ll} \frac{\int _{x_c-h_x}^{x_c+h_x}\int _{z_c-h_z}^{z_c+h_z}{H_2}(x, y_c+(-1)^{j+1}h_y, z)L_j(x)L_k(z)\text {d}x\text {d}z}{(L_j,L_j)(L_k,L_k)},\ \ &{}\ 0\le i\le 1,\\ \frac{\int _{K}\frac{\partial H_2}{\partial y}(x,y,z)\phi _i'(y)L_j(x)L_k(z)\text {d}V}{(\phi _i',\phi _i')(L_j,L_j)(L_k,L_k)},\ \ &{} 2\le i\le p, \end{array}\right. }\\ D_{ijk}^3= & {} {\left\{ \begin{array}{ll} \frac{\int _{x_c-h_x}^{x_c+h_x}\int _{y_c-h_y}^{y_c+h_y}{H_3}(x, y, z_c+(-1)^{j+1}h_z)L_j(x)L_k(y)\text {d}x\text {d}y}{(L_j,L_j)(L_k,L_k)},\ \ &{}0\le i\le 1,\\ \frac{\int _{K}\frac{\partial H_3}{\partial z}(x,y,z)\phi _i'(z)L_j(x)L_k(y)\text {d}V}{(\phi _i',\phi _i')(L_j,L_j)(L_k,L_k)},\ \ &{} 2\le i\le p, \end{array}\right. } \end{aligned}$$

with \(0\le j, k\le p-1\).

The other interpolation coefficient in 2D is listed as

$$\begin{aligned} C_{ij}^2={\left\{ \begin{array}{ll} \frac{\int _{y_c-h_y}^{y_c+h_y}E_2(x_c+(-1)^{i+1}h_x,y,z_c+(-1)^{i+1}h_z) L_j(y)\text {d}y}{(L_j,L_j)},&{}i=0,1,\ 0\le j\le p-1,\\ \frac{\int _{K}\frac{\partial E_2}{\partial x}(x,y)\phi _i'(x)L_j(y)\text {d}V}{(\phi _i',\phi _i')(L_j,L_j)},&{} 2\le i\le p,\ 0\le j \le p-1.\\ \end{array}\right. } \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Q. & Zhang, Z. Superconvergence Analysis and PPR Recovery of Arbitrary Order Edge Elements for Maxwell’s Equations. J Sci Comput 78, 1207–1230 (2019). https://doi.org/10.1007/s10915-018-0805-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0805-8

Keywords

Mathematics Subject Classification

Navigation