Skip to main content
Log in

Symmetric Boundary-Finite Element Discretization of Time Dependent Acoustic Scattering by Elastic Obstacles with Piezoelectric Behavior

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A coupled BEM/FEM formulation for the transient interaction between an acoustic field and a piezoelectric scatterer is proposed. The scattered part of the acoustic wave is represented in terms of retarded layer potentials while the elastic displacement and electric potential are treated variationally. This results in an integro-differential system. Well posedness of a general Galerkin semi-discretization in space of the problem is shown in the Laplace domain and translated into explicit stability bounds in the time domain. Trapezoidal-rule and BDF2 convolution quadrature are used in combination with matching time stepping for time discretization. Second order convergence is proven for the BDF2-based method. Numerical experiments are provided for BDF2 and trapezoidal rule based time evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2(2), 151–157 (1970)

    Article  Google Scholar 

  2. Bamberger, A., Ha-Duong, T.: Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I. Math. Methods Appl. Sci. 8(3), 405–435 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banjai, L., Lubich, C.: An error analysis of Runge–Kutta convolution quadrature. BIT 51(3), 483–496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banjai, L., Lubich, C., Melenk, J.M.: Runge–Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119(1), 1–20 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banjai, L., Lubich, C., Sayas, F.-J.: Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. 129(4), 611–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47(1):227–249 (2008/09)

  8. Banjai, L., Schanz, M.: Wave propagation problems treated with convolution quadrature and BEM. In: Langer, U., Schanz, M., Steinbach, O., Wendland, W.L. (eds.) Fast Boundary Element Methods in Engineering and Industrial Applications, Volume 63 of Lect. Notes Appl. Comput. Mech., pp. 145–184. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76(1–3), 347–363 (2000)

    Article  Google Scholar 

  10. Calvo, M.P., Cuesta, E., Palencia, C.: Runge–Kutta convolution quadrature methods for well-posed equations with memory. Numer. Math. 107(4), 589–614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deü, J.-F., Larbi, W., Ohayon, R.: Piezoelectric structural acoustic problems: symmetric variational formulations and finite element results. Comput. Methods Appl. Mech. Eng. 197(19–20), 1715–1724 (2008). Computational Methods in Fluid Structure Interaction

    Article  MATH  Google Scholar 

  12. Deü, J.-F., Larbi, W., Ohayon, R.: Variational formulations of interior structural-acoustic vibration problems. In: Sandberg, G., Ohayon, R. (eds.) Computational Aspects of Structural Acoustics and Vibration, Volume 505 of CISM International Centre for Mechanical Sciences, pp. 1–21. Springer, Vienna (2009)

    Google Scholar 

  13. Domínguez, V., Sayas, F.-J.: Stability of discrete liftings. C. R. Math. Acad. Sci. Paris 337(12), 805–808 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Domínguez, V., Sayas, F.-J.: Some properties of layer potentials and boundary integral operators for the wave equation. J. Integral Equ. Appl. 25(2), 253–294 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Enderlein, M., Ricoeur, A., Kuna, M.: Finite element techniques for dynamic crack analysis in piezoelectrics. Int. J. Fract. 134(3–4), 191–208 (2005)

    Article  MATH  Google Scholar 

  16. García-Sánchez, F., Zhang, C., Sáez, A.: 2-D transient dynamic analysis of cracked piezoelectric solids by a time-domain BEM. Comput. Methods Appl. Mech. Eng. 197(33–40), 3108–3121 (2008)

  17. Gaul, L., Kögl, M., Moser, F., Schanz, M.: Boundary Element Methods for the Dynamic Analysis of Elastic, Viscoelastic, and Piezoelectric Solids. Wiley, Hoboken (2004)

    Book  Google Scholar 

  18. Hackbusch, W., Kress, W., Sauter, S.A.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. IMA J. Numer. Anal. 29(1), 158–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6(3), 532–541 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hassell, M.: Convolution Quadrature for Wave Simulations. SEMA-SIMAI Lecture Notes in Mathematics. Springer, Berlin (2016). (to appear)

    Google Scholar 

  21. Hassell, M., Sayas, F.-J.: A fully discrete BEM-FEM scheme for transient acoustic waves. Comput. Methods Appl. Mech. Eng. 309, 106–130 (2016)

    Article  MathSciNet  Google Scholar 

  22. Hsiao, G.C., Sánchez-Vizuet, T., Sayas, F.-J.: Boundary and coupled boundary-finite element methods for transient wave-structure interaction. IMA J. Numer. Anal. (2016). doi:10.1093/imanum/drw009

    Google Scholar 

  23. Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering Volume 132 of Applied Mathematical Sciences. Springer, New York (1998)

    Book  MATH  Google Scholar 

  24. Imperiale, S., Joly, P.: Mathematical and numerical modelling of piezoelectric sensors. ESAIM Math. Model. Numer. Anal. 46(4), 875–909 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kögl, M., Gaul, L.: A boundary element method for transient piezoelectric analysis. Eng. Anal. Bound. Elem. 24(7–8), 591–598 (2000)

    Article  MATH  Google Scholar 

  26. Kögl, M., Gaul, L.: Piezoelectric analysis with FEM and BEM. In: Suleman, A. (ed.) Smart Structures, Vol. 429 of International Centre for Mechanical Sciences, pp. 120–130. Springer, Vienna (2001)

    Google Scholar 

  27. Laliena, A.R., Sayas, F.-J.: Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112(4), 637–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52(4), 413–425 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67(3), 365–389 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nguyen-Vinh, H., Bakar, I., Msekh, M., Song, J.-H., Muthu, J., Zi, G., Le, P., Bordas, S., Simpson, R., Natarajan, S., Lahmer, T., Rabczuk, T.: Extended finite element method for dynamic fracture of piezo-electric materials. Eng. Fract. Mech. 92, 19–31 (2012)

    Article  Google Scholar 

  32. Pan, E.: A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Eng. Anal. Bound. Elem. 23(1), 67–76 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pang, Y., Wang, Y.-S., Liu, J.-X., Fang, D.-N.: Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media. Int. J. Eng. Sci. 46(11), 1098–1110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sayas, F.-J.: Retarded Potentials and Time Domain Integral Equations: A Roadmap, Volume 50 of Computational Mathematics. Springer, Berlin (2016)

    Book  Google Scholar 

  35. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Springer, Berlin (1969)

    Book  Google Scholar 

  37. Yuan, X., Zhu, Z.: Reflection and refraction of plane waves at interface between two piezoelectric media. Acta Mech. 223(12), 2509–2521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhao, P., Qin, T., Zhang, L.: A regularized time-domain BIEM for transient elastodynamic crack analysis in piezoelectric solids. Eng. Anal. Bound. Elem. 56, 145–153 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco-Javier Sayas.

Additional information

TSV and FJS partially funded by NSF Grant DMS 1216356.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Vizuet, T., Sayas, FJ. Symmetric Boundary-Finite Element Discretization of Time Dependent Acoustic Scattering by Elastic Obstacles with Piezoelectric Behavior. J Sci Comput 70, 1290–1315 (2017). https://doi.org/10.1007/s10915-016-0281-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0281-y

Keywords

Mathematics Subject Classification

Navigation