Skip to main content
Log in

Stable numerical coupling of exterior and interior problems for the wave equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The acoustic wave equation on the whole three-dimensional space is considered with initial data and inhomogeneity having support in a bounded domain, which need not be convex. We propose and study a numerical method that approximates the solution using computations only in the interior domain and on its boundary. The transmission conditions between the interior and exterior domain are imposed by a time-dependent boundary integral equation coupled to the wave equation in the interior domain. We give a full discretization by finite elements and leapfrog time-stepping in the interior, and by boundary elements and convolution quadrature on the boundary. The direct coupling becomes stable on adding a stabilization term on the boundary. The derivation of stability estimates is based on a strong positivity property of the Calderón boundary operators for the Helmholtz and wave equations and uses energy estimates both in time and frequency domain. The stability estimates together with bounds of the consistency error yield optimal-order error bounds of the full discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abboud, T., Joly, P., Rodríguez, J., Terrasse, I.: Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains. J. Comput. Phys. 230(15), 5877–5907 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alpert, B., Greengard, L., Hagstrom, T.: Nonreflecting boundary conditions for the time-dependent wave equation. J. Comput. Phys. 180(1), 270–296 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bamberger, A., Duong, T.H.: Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide. Math. Methods Appl. Sci. 8(4), 598–608 (1986)

    MATH  MathSciNet  Google Scholar 

  4. Bamberger, A., Ha-Duong, T.: Formulation variationelle espace-temps pour le calcul par potentiel retardé d’une onde acoustique. Math. Meth. Appl. Sci. 8, 405–435 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Banjai, L., Lubich, C., Melenk, J.M.: Runge-Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119(1), 1–20 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47(1), 227–249 (2008/09)

  8. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chappell, D.J.: A convolution quadrature Galerkin boundary element method for the exterior Neumann problem of the wave equation. Math. Methods Appl. Sci. 32(12), 1585–1608 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, Q., Monk, P., Wang, X., Weile, D.: Analysis of convolution quadrature applied to the time-domain electric field integral equation. Commun. Comput. Phys. 11, 383–399 (2012)

    MathSciNet  Google Scholar 

  11. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31(139), 629–651 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gander, M.J., Schädle, A.: The pole condition: a Padé approximation of the Dirichlet to Neumann operator. In: Domain decomposition methods in science and engineering XIX, Lect. Notes Comput. Sci. Eng., vol. 78, pp. 125–132. Springer, Heidelberg (2011)

  13. Grote, M.J., Keller, J.B.: Nonreflecting boundary conditions for time-dependent scattering. J. Comput. Phys. 127(1), 52–65 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time dependent problems and difference methods. Wiley, New York (1995)

    MATH  Google Scholar 

  15. Ha-Duong, T.: On retarded potential boundary integral equations and their discretization. In: Ainsworth, M., Davies, P., Duncan, D., Martin, P., Rynne, B. (eds.) Computational Methods in Wave Propagation, vol. 31, pp. 301–336. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Ha-Duong, T., Ludwig, B., Terrasse, I.: A Galerkin BEM for transient acoustic scattering by an absorbing obstacle. Int. J. Numer. Meth. Eng. 57, 1845–1882 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hackbusch, W., Kress, W., Sauter, S.A.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. IMA J. Numer. Anal. 29(1), 158–179 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. In: Acta numerica, 1999, Acta Numer., vol. 8, pp. 47–106. Cambridge Univ. Press, Cambridge (1999)

  19. Hagstrom, T., Mar-Or, A., Givoli, D.: High-order local absorbing conditions for the wave equation: extensions and improvements. J. Comput. Phys. 227(6), 3322–3357 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  21. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numerica 12, 399–450 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Herglotz, G.: Über Potenzreihen mit positivem, reellen Teil im Einheitskreis. In: Herglotz, G. (ed.) Gesammelte Schriften. Vandenhoeck & Ruprecht, Göttingen (1979) (1911)

  23. Jiao, D., Lu, M., Michielssen, E., Jin, J.M.: A fast time-domain finite elementboundary integral method for electromagnetic analysis. IEEE Trans. Antennas Propag. 49, 1453–1461 (2001)

    Article  MATH  Google Scholar 

  24. Laliena, A.R., Sayas, F.J.: Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112(4), 637–678 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67, 365–389 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Monegato, G., Scuderi, L., Stanić, M.: Lubich convolution quadratures and their application to problems described by space-time BIEs. Numer. Algorithms 56, 405–436 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ruprecht, D., Schädle, A., Schmidt, F., Zschiedrich, L.: Transparent boundary conditions for time-dependent problems. SIAM J. Sci. Comput. 30(5), 2358–2385 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehel Banjai.

Additional information

F.-J. Sayas was partially supported by the National Science Foundation (grant DMS-1216356).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banjai, L., Lubich, C. & Sayas, FJ. Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. 129, 611–646 (2015). https://doi.org/10.1007/s00211-014-0650-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0650-0

Mathematics Subject Classification

Navigation