Skip to main content
Log in

Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We extend the definition of the classical Jacobi polynomials withindexes α, β>−1 to allow α and/or β to be negative integers. We show that the generalized Jacobi polynomials, with indexes corresponding to the number of boundary conditions in a given partial differential equation, are the natural basis functions for the spectral approximation of this partial differential equation. Moreover, the use of generalized Jacobi polynomials leads to much simplified analysis, more precise error estimates and well conditioned algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška I., Suri M. (1987). The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal. 24(4): 750–776

    Article  MathSciNet  Google Scholar 

  2. Babŭska I., Szabó B.A., Katz I.N. (1981). The p-version of the finite element method. SIAM J. Numer. Anal. 18: 512–545

    Google Scholar 

  3. Bernardi C., Maday Y. (1992). Approximations Spectrales de Problèmes aux Limites Elliptiques. Springer-Verlag, Paris

    Google Scholar 

  4. Bernardi C., Maday Y. (1997). Spectral method. In Ciarlet P. G., and Lions, L. L., (eds.), Handbook of Numerical Analysis, V. 5 (Part 2). North-Holland.

  5. Bernardi, C., Dauge, M., and Maday, Y. (1999). Spectral Methods for Axisymmetric Domains, volume 3 of Series in Applied Mathematics (Paris). Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris. Numerical algorithms and tests due to Mejdi Azaï ez.

  6. Bernardi C., Maday Y. (1991). Polynomial approximation of some singular functions. Appl. Anal. 42(1): 1–32

    MathSciNet  Google Scholar 

  7. Dorr M.R. (1984). The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21(6): 1180–1207

    Article  MATH  MathSciNet  Google Scholar 

  8. Funaro D. (1992). Polynomial Approxiamtions of Differential Equations. Springer-verlag.

  9. Littlewood J.E., Hardy G.H., Pólya G. (1952). Inequalities. Cambridge University Press, UK

    Google Scholar 

  10. Guo B.Y. (2000). Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J. Math. Anal. Appl. 243: 373–408

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo, B., Shen, J., and Wang, L.-L. Generalized Jacobi polynomials/functions and applications to spectral methods. Preprint.

  12. Huang W.Z., Sloan D.M. (1992). The pseudospectral method for third-order differential equations. SIAM J. Numer. Anal. 29(6): 1626–1647

    Article  MathSciNet  Google Scholar 

  13. Merryfield W.J., Shizgal B. (1993). Properties of collocation third-derivative operators. J. Comput. Phys. 105(1): 182–185

    Article  MathSciNet  ADS  Google Scholar 

  14. Orszag S.A. (1980). Spectral methods for complex geometries. J. Comput. Phys. 37: 70–92

    Article  MATH  MathSciNet  Google Scholar 

  15. Parkes E.J., Zhu Z., Duffy B.R., Huang H.C. (1998). Sech-polynomial travelling solitary-wave solutions of odd-order generalized KdV-type equations. Physics Letters A 248: 219–224

    Article  CAS  ADS  Google Scholar 

  16. Shen J. (1994). Efficient spectral-Galerkin method I. direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput. 15: 1489–1505

    Article  MATH  MathSciNet  Google Scholar 

  17. Shen J. (2003). A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KDV equation. SIAM J. Numer. Anal. 41: 1595–1619

    Article  MATH  MathSciNet  Google Scholar 

  18. Szegö, G. (1975). Orthogonal Polynomials (fourth edition). Volume 23. AMS Coll. Publications.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-Yu Guo.

Additional information

Mathematics subject classification 1991. 65N35, 65N22, 65F05, 35J05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, BY., Shen, J. & Wang, LL. Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials. J Sci Comput 27, 305–322 (2006). https://doi.org/10.1007/s10915-005-9055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9055-7

Keywords

Navigation