Skip to main content
Log in

Development of a Data Acquisition System for Kinetic Inductance Detectors: Wide Dynamic Range and High Sampling Rate for Astronomical Observation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Microwave kinetic inductance detectors have a variety of potential applications in astronomical observations. We built a data acquisition system for kinetic inductance detectors combining a dedicated analog board and a commercially available digital board to meet the requirements of astronomical measurements, such as observation of the cosmic microwave background. This paper reports the status of the development of the data acquisition system. We have already achieved simultaneous readout through 120 channels using a direct down-conversion method to decode the signal. A variety of software has been developed and tested using the functionalities of the system and actual detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.A.R. Ade et al. [BICEP2 and Keck Array Collaborations], Phys. Rev. Lett. 116, 031302 (2016). https://doi.org/10.1103/PhysRevLett.116.031302. [arXiv:1510.09217 [astro-ph.CO]]

  2. D. Hanson et al. [SPTpol Collaboration], Phys. Rev. Lett. 111, no. 14, 141301 (2013). https://doi.org/10.1103/PhysRevLett.111.141301. [arXiv:1307.5830 [astro-ph.CO]]

  3. T. Louis et al. [ACTPol Collaboration], JCAP 1706, no. 06, 031 (2017). https://doi.org/10.1088/1475-7516/2017/06/031. [arXiv:1610.02360 [astro-ph.CO]]

    Article  Google Scholar 

  4. J.A. Grayson et al. [BICEP3 Collaboration], Proc. SPIE Int. Soc. Opt. Eng. 9914, 99140S (2016). https://doi.org/10.1117/12.2233894. [arXiv:1607.04668 [astro-ph.IM]]

  5. T. Matsumura et al., J. Low Temp. Phys. 176, 733 (2014). https://doi.org/10.1007/s10909-013-0996-1. [arXiv:1311.2847 [astro-ph.IM]]

    Article  ADS  Google Scholar 

  6. A. Suzuki et al. [POLARBEAR Collaboration], J. Low. Temp. Phys. 184, no. 3–4, 805 (2016). https://doi.org/10.1007/s10909-015-1425-4. [arXiv:1512.07299 [astro-ph.IM]]

    Article  ADS  Google Scholar 

  7. K.N. Abazajian et al. [CMB-S4 Collaboration]. arXiv:1610.02743 [astro-ph.CO]

  8. J.A. Chervenak, K.D. Irwin, E.N. Grossman et al., Appl. Phys. Lett. 74, 4043 (1999)

    Article  ADS  Google Scholar 

  9. T.M. Lanting, H.-M. Cho, J. Clarke et al., Nucl. Instrum. Methods Phys. Res. A 520, 548 (2004)

    Article  ADS  Google Scholar 

  10. K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107 (2004)

    Article  ADS  Google Scholar 

  11. P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425(6960), 817–821 (2003). 10

    Article  ADS  Google Scholar 

  12. H. Ishitsuka, M. Ikeno, S. Oguri, O. Tajima, N. Tomita, T. Uchida, J. Low Temp. Phys. 184(1), 424–430 (2016)

    Article  ADS  Google Scholar 

  13. O. Bourrion, A. Bideaud, A. Benoit, A. Cruciani, J. Macias-Perez, A. Monfardini, M. Roesch, L. Swenson, C. Vescovi. J. Instrum. 6(06), 06012

  14. S.J.C. Yates, A.M. Baryshev, J.J.A. Baselmans, B. Klein, R. Güsten, Appl. Phys. Lett. 95(4), 042504 (2009). https://doi.org/10.1063/1.3159818

    Article  ADS  Google Scholar 

  15. S. Oguri et al., J. Low Temp. Phys. 184(3–4), 786 (2016). https://doi.org/10.1007/s10909-015-1420-9

    Article  ADS  Google Scholar 

  16. T. Nagasaki et al., J. Low Temp. Phys. LTD17 Special Issue, 2018 Submitted

  17. E-mail: suzukij@post.kek.jp

Download references

Acknowledgements

This work is supported by Grants-in-Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology, Japan (KAKENHI Grant Nos. 15H05743, 16J09435), the Center for the Promotion of Integrated Sciences of SOKENDAI, and the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant No. NRF-2017R1A2B3001968). We thank the Research Center for Neutrino Science, Tohoku University, and RIKEN Center for Advanced Photonics for their feedback on the readout system. We also acknowledge support from the Open Source Consortium of Instrumentation (Open-It).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, J., Ishitsuka, H., Lee, K. et al. Development of a Data Acquisition System for Kinetic Inductance Detectors: Wide Dynamic Range and High Sampling Rate for Astronomical Observation. J Low Temp Phys 193, 562–569 (2018). https://doi.org/10.1007/s10909-018-2033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2033-x

Keywords

Navigation